Weak almost periodicity of $L_1$ contractions and coboundaries of non-singular transformations
Studia Mathematica, Tome 138 (2000) no. 3, pp. 225-240

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that a weakly almost periodic operator T in a Banach space is mean ergodic, and in the complex case, also λT is mean ergodic for every |λ|=1. We prove that a positive contraction on $L_1$ is weakly almost periodic if (and only if) it is mean ergodic. An example shows that without positivity the result is false. In order to construct a contraction T on a complex $L_1$ such that λT is mean ergodic whenever |λ|=1, but T is not weakly almost periodic, we prove the following: Let τ be an invertible weakly mixing non-singular transformation of a separable atomless probability space. Then there exists a complex function $φ ∈ L_∞$ with |φ(x)|=1 a.e. such that for every λ ∈ℂ with |λ|=1 the function ⨍ ≡ 0 is the only solution of the equation ⨍(τx)=λφ(x)⨍(x). Moreover, the set of such functions φ is residual in the set of all complex unimodular measurable functions (with the $L_1$ topology)
DOI : 10.4064/sm-138-3-225-240

Isaac Kornfeld 1 ;  1

1
@article{10_4064_sm_138_3_225_240,
     author = {Isaac Kornfeld and  },
     title = {Weak almost periodicity of $L_1$ contractions and coboundaries of non-singular transformations},
     journal = {Studia Mathematica},
     pages = {225--240},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-138-3-225-240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-225-240/}
}
TY  - JOUR
AU  - Isaac Kornfeld
AU  -  
TI  - Weak almost periodicity of $L_1$ contractions and coboundaries of non-singular transformations
JO  - Studia Mathematica
PY  - 2000
SP  - 225
EP  - 240
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-225-240/
DO  - 10.4064/sm-138-3-225-240
LA  - en
ID  - 10_4064_sm_138_3_225_240
ER  - 
%0 Journal Article
%A Isaac Kornfeld
%A  
%T Weak almost periodicity of $L_1$ contractions and coboundaries of non-singular transformations
%J Studia Mathematica
%D 2000
%P 225-240
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-225-240/
%R 10.4064/sm-138-3-225-240
%G en
%F 10_4064_sm_138_3_225_240
Isaac Kornfeld;  . Weak almost periodicity of $L_1$ contractions and coboundaries of non-singular transformations. Studia Mathematica, Tome 138 (2000) no. 3, pp. 225-240. doi: 10.4064/sm-138-3-225-240

Cité par Sources :