Interpolation on families of characteristic functions
Studia Mathematica, Tome 138 (2000) no. 3, pp. 209-224

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a problem of interpolating a linear operator which is bounded on some family of characteristic functions. A new example is given of a Banach couple of function spaces for which such interpolation is possible. This couple is of the form $\overline Φ =(B,L^∞)$ where B is an arbitrary Banach lattice of measurable functions on a σ-finite nonatomic measure space (Ω,Σ,μ). We also give an equivalent expression for the norm of a function ⨍ in the real interpolation space $(B,L^∞)_{θ,p}$ in terms of the characteristic functions of the level sets of ⨍.
DOI : 10.4064/sm-138-3-209-224

Michael Cwikel 1 ;  1

1
@article{10_4064_sm_138_3_209_224,
     author = {Michael Cwikel and  },
     title = {Interpolation on families of characteristic functions},
     journal = {Studia Mathematica},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-138-3-209-224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-209-224/}
}
TY  - JOUR
AU  - Michael Cwikel
AU  -  
TI  - Interpolation on families of characteristic functions
JO  - Studia Mathematica
PY  - 2000
SP  - 209
EP  - 224
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-209-224/
DO  - 10.4064/sm-138-3-209-224
LA  - en
ID  - 10_4064_sm_138_3_209_224
ER  - 
%0 Journal Article
%A Michael Cwikel
%A  
%T Interpolation on families of characteristic functions
%J Studia Mathematica
%D 2000
%P 209-224
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-209-224/
%R 10.4064/sm-138-3-209-224
%G en
%F 10_4064_sm_138_3_209_224
Michael Cwikel;  . Interpolation on families of characteristic functions. Studia Mathematica, Tome 138 (2000) no. 3, pp. 209-224. doi: 10.4064/sm-138-3-209-224

Cité par Sources :