Topological classification of strong duals to nuclear (LF)-spaces
Studia Mathematica, Tome 138 (2000) no. 3, pp. 201-208

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the strong dual X' to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: $ℝ^ω$, $ℝ^∞$, $Q×ℝ^∞$, $ℝ^ω×ℝ^∞$, or $(ℝ^∞)^ω$, where $ℝ^∞ = lim ℝ^n$ and $Q=[-1,1]^ω$. In particular, the Schwartz space D' of distributions is homeomorphic to $(ℝ^∞)^ω$. As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to $ℝ^∞$ or to $Q×ℝ^∞$. In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either to $ℝ^∞$ or to $Q×ℝ^∞$.
DOI : 10.4064/sm-138-3-201-208
Keywords: dual space, nuclear (LF)-space, Montel space, direct limit, Hilbert cube

Taras Banakh 1

1
@article{10_4064_sm_138_3_201_208,
     author = {Taras Banakh},
     title = {Topological classification of strong duals to nuclear {(LF)-spaces}},
     journal = {Studia Mathematica},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-138-3-201-208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-201-208/}
}
TY  - JOUR
AU  - Taras Banakh
TI  - Topological classification of strong duals to nuclear (LF)-spaces
JO  - Studia Mathematica
PY  - 2000
SP  - 201
EP  - 208
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-201-208/
DO  - 10.4064/sm-138-3-201-208
LA  - en
ID  - 10_4064_sm_138_3_201_208
ER  - 
%0 Journal Article
%A Taras Banakh
%T Topological classification of strong duals to nuclear (LF)-spaces
%J Studia Mathematica
%D 2000
%P 201-208
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-201-208/
%R 10.4064/sm-138-3-201-208
%G en
%F 10_4064_sm_138_3_201_208
Taras Banakh. Topological classification of strong duals to nuclear (LF)-spaces. Studia Mathematica, Tome 138 (2000) no. 3, pp. 201-208. doi: 10.4064/sm-138-3-201-208

Cité par Sources :