Topological classification of strong duals to nuclear (LF)-spaces
Studia Mathematica, Tome 138 (2000) no. 3, pp. 201-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the strong dual X' to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: $ℝ^ω$, $ℝ^∞$, $Q×ℝ^∞$, $ℝ^ω×ℝ^∞$, or $(ℝ^∞)^ω$, where $ℝ^∞ = lim ℝ^n$ and $Q=[-1,1]^ω$. In particular, the Schwartz space D' of distributions is homeomorphic to $(ℝ^∞)^ω$. As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to $ℝ^∞$ or to $Q×ℝ^∞$. In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either to $ℝ^∞$ or to $Q×ℝ^∞$.
Keywords:
dual space, nuclear (LF)-space, Montel space, direct limit, Hilbert cube
Affiliations des auteurs :
Taras Banakh 1
@article{10_4064_sm_138_3_201_208,
author = {Taras Banakh},
title = {Topological classification of strong duals to nuclear {(LF)-spaces}},
journal = {Studia Mathematica},
pages = {201--208},
publisher = {mathdoc},
volume = {138},
number = {3},
year = {2000},
doi = {10.4064/sm-138-3-201-208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-201-208/}
}
TY - JOUR AU - Taras Banakh TI - Topological classification of strong duals to nuclear (LF)-spaces JO - Studia Mathematica PY - 2000 SP - 201 EP - 208 VL - 138 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-201-208/ DO - 10.4064/sm-138-3-201-208 LA - en ID - 10_4064_sm_138_3_201_208 ER -
Taras Banakh. Topological classification of strong duals to nuclear (LF)-spaces. Studia Mathematica, Tome 138 (2000) no. 3, pp. 201-208. doi: 10.4064/sm-138-3-201-208
Cité par Sources :