Valdivia compacta and equivalent norms
Studia Mathematica, Tome 138 (2000) no. 2, pp. 179-191

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the dual unit ball of a Banach space X is a Corson compactum provided that the dual unit ball with respect to every equivalent norm on X is a Valdivia compactum. As a corollary we show that the dual unit ball of a Banach space X of density $ℵ_1$ is Corson if (and only if) X has a projectional resolution of the identity with respect to every equivalent norm. These results answer questions asked by M. Fabian, G. Godefroy and V. Zizler and yield a converse to Amir-Lindenstrauss' theorem.
DOI : 10.4064/sm-138-2-179-191
Keywords: Corson compact space, Valdivia compact space, projectional resolution of the identity, countably 1-norming Markushevich basis, equivalent norm

Ondřej Kalenda 1

1
@article{10_4064_sm_138_2_179_191,
     author = {Ond\v{r}ej Kalenda},
     title = {Valdivia compacta and equivalent norms},
     journal = {Studia Mathematica},
     pages = {179--191},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-138-2-179-191},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-179-191/}
}
TY  - JOUR
AU  - Ondřej Kalenda
TI  - Valdivia compacta and equivalent norms
JO  - Studia Mathematica
PY  - 2000
SP  - 179
EP  - 191
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-179-191/
DO  - 10.4064/sm-138-2-179-191
LA  - en
ID  - 10_4064_sm_138_2_179_191
ER  - 
%0 Journal Article
%A Ondřej Kalenda
%T Valdivia compacta and equivalent norms
%J Studia Mathematica
%D 2000
%P 179-191
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-179-191/
%R 10.4064/sm-138-2-179-191
%G en
%F 10_4064_sm_138_2_179_191
Ondřej Kalenda. Valdivia compacta and equivalent norms. Studia Mathematica, Tome 138 (2000) no. 2, pp. 179-191. doi: 10.4064/sm-138-2-179-191

Cité par Sources :