Schauder decompositions and multiplier theorems
Studia Mathematica, Tome 138 (2000) no. 2, pp. 135-163

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for $L^p$-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.
DOI : 10.4064/sm-138-2-135-163

P. Clément 1 ;  1 ;  1 ;  1

1
@article{10_4064_sm_138_2_135_163,
     author = {P. Cl\'ement and   and   and  },
     title = {Schauder decompositions and multiplier theorems},
     journal = {Studia Mathematica},
     pages = {135--163},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-138-2-135-163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-135-163/}
}
TY  - JOUR
AU  - P. Clément
AU  -  
AU  -  
AU  -  
TI  - Schauder decompositions and multiplier theorems
JO  - Studia Mathematica
PY  - 2000
SP  - 135
EP  - 163
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-135-163/
DO  - 10.4064/sm-138-2-135-163
LA  - en
ID  - 10_4064_sm_138_2_135_163
ER  - 
%0 Journal Article
%A P. Clément
%A  
%A  
%A  
%T Schauder decompositions and multiplier theorems
%J Studia Mathematica
%D 2000
%P 135-163
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-135-163/
%R 10.4064/sm-138-2-135-163
%G en
%F 10_4064_sm_138_2_135_163
P. Clément;  ;  ;  . Schauder decompositions and multiplier theorems. Studia Mathematica, Tome 138 (2000) no. 2, pp. 135-163. doi: 10.4064/sm-138-2-135-163

Cité par Sources :