Schauder decompositions and multiplier theorems
Studia Mathematica, Tome 138 (2000) no. 2, pp. 135-163
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for $L^p$-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.
@article{10_4064_sm_138_2_135_163,
author = {P. Cl\'ement and and and },
title = {Schauder decompositions and multiplier theorems},
journal = {Studia Mathematica},
pages = {135--163},
year = {2000},
volume = {138},
number = {2},
doi = {10.4064/sm-138-2-135-163},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-135-163/}
}
TY - JOUR AU - P. Clément AU - AU - AU - TI - Schauder decompositions and multiplier theorems JO - Studia Mathematica PY - 2000 SP - 135 EP - 163 VL - 138 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-135-163/ DO - 10.4064/sm-138-2-135-163 LA - en ID - 10_4064_sm_138_2_135_163 ER -
P. Clément; ; ; . Schauder decompositions and multiplier theorems. Studia Mathematica, Tome 138 (2000) no. 2, pp. 135-163. doi: 10.4064/sm-138-2-135-163
Cité par Sources :