Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 p ∞
Studia Mathematica, Tome 138 (2000) no. 2, pp. 121-134
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained
@article{10_4064_sm_138_2_121_134,
author = {Ana I. Alonso and and },
title = {Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < \ensuremath{\infty}},
journal = {Studia Mathematica},
pages = {121--134},
year = {2000},
volume = {138},
number = {2},
doi = {10.4064/sm-138-2-121-134},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-121-134/}
}
TY - JOUR AU - Ana I. Alonso AU - AU - TI - Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞ JO - Studia Mathematica PY - 2000 SP - 121 EP - 134 VL - 138 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-121-134/ DO - 10.4064/sm-138-2-121-134 LA - en ID - 10_4064_sm_138_2_121_134 ER -
%0 Journal Article %A Ana I. Alonso %A %A %T Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞ %J Studia Mathematica %D 2000 %P 121-134 %V 138 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-121-134/ %R 10.4064/sm-138-2-121-134 %G en %F 10_4064_sm_138_2_121_134
Ana I. Alonso; ; . Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞. Studia Mathematica, Tome 138 (2000) no. 2, pp. 121-134. doi: 10.4064/sm-138-2-121-134
Cité par Sources :