Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 p ∞
Studia Mathematica, Tome 138 (2000) no. 2, pp. 121-134

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained
DOI : 10.4064/sm-138-2-121-134

Ana I. Alonso 1 ;  1 ;  1

1
@article{10_4064_sm_138_2_121_134,
     author = {Ana I. Alonso and   and  },
     title = {Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < \ensuremath{\infty}},
     journal = {Studia Mathematica},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-138-2-121-134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-121-134/}
}
TY  - JOUR
AU  - Ana I. Alonso
AU  -  
AU  -  
TI  - Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞
JO  - Studia Mathematica
PY  - 2000
SP  - 121
EP  - 134
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-121-134/
DO  - 10.4064/sm-138-2-121-134
LA  - en
ID  - 10_4064_sm_138_2_121_134
ER  - 
%0 Journal Article
%A Ana I. Alonso
%A  
%A  
%T Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞
%J Studia Mathematica
%D 2000
%P 121-134
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-121-134/
%R 10.4064/sm-138-2-121-134
%G en
%F 10_4064_sm_138_2_121_134
Ana I. Alonso;  ;  . Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞. Studia Mathematica, Tome 138 (2000) no. 2, pp. 121-134. doi: 10.4064/sm-138-2-121-134

Cité par Sources :