Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
Studia Mathematica, Tome 138 (2000) no. 2, pp. 101-119

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.
DOI : 10.4064/sm-138-2-101-119

Kazuhiro Kurata 1 ;  1

1
@article{10_4064_sm_138_2_101_119,
     author = {Kazuhiro Kurata and  },
     title = {Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials},
     journal = {Studia Mathematica},
     pages = {101--119},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-138-2-101-119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-101-119/}
}
TY  - JOUR
AU  - Kazuhiro Kurata
AU  -  
TI  - Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
JO  - Studia Mathematica
PY  - 2000
SP  - 101
EP  - 119
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-101-119/
DO  - 10.4064/sm-138-2-101-119
LA  - en
ID  - 10_4064_sm_138_2_101_119
ER  - 
%0 Journal Article
%A Kazuhiro Kurata
%A  
%T Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
%J Studia Mathematica
%D 2000
%P 101-119
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-101-119/
%R 10.4064/sm-138-2-101-119
%G en
%F 10_4064_sm_138_2_101_119
Kazuhiro Kurata;  . Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials. Studia Mathematica, Tome 138 (2000) no. 2, pp. 101-119. doi: 10.4064/sm-138-2-101-119

Cité par Sources :