Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
Studia Mathematica, Tome 138 (2000) no. 2, pp. 101-119
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.
@article{10_4064_sm_138_2_101_119,
author = {Kazuhiro Kurata and },
title = {Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials},
journal = {Studia Mathematica},
pages = {101--119},
year = {2000},
volume = {138},
number = {2},
doi = {10.4064/sm-138-2-101-119},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-101-119/}
}
TY - JOUR AU - Kazuhiro Kurata AU - TI - Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials JO - Studia Mathematica PY - 2000 SP - 101 EP - 119 VL - 138 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-101-119/ DO - 10.4064/sm-138-2-101-119 LA - en ID - 10_4064_sm_138_2_101_119 ER -
%0 Journal Article %A Kazuhiro Kurata %A %T Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials %J Studia Mathematica %D 2000 %P 101-119 %V 138 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-2-101-119/ %R 10.4064/sm-138-2-101-119 %G en %F 10_4064_sm_138_2_101_119
Kazuhiro Kurata; . Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials. Studia Mathematica, Tome 138 (2000) no. 2, pp. 101-119. doi: 10.4064/sm-138-2-101-119
Cité par Sources :