Tauberian theorems for Cesàro summable double integrals over $ℝ^{2}_{+}$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 138 (2000) no. 1, pp. 41-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Given ⨍ ∈ $L^1_loc (ℝ^2_+)$, denote by s(w,z) its integral over the rectangle [0,w]× [0,z] and by σ(u,v) its (C,1,1) mean, that is, the average value of s(w,z) over [0,u] × [0,v], where u,v,w,z>0. Our permanent assumption is that (*) σ(u,v) → A as u,v → ∞, where A is a finite number. First, we consider real-valued functions ⨍ and give one-sided Tauberian conditions which are necessary and sufficient in order that the convergence (**) s(u,v) → A as u,v → ∞ follow from (*). Corollaries allow these Tauberian conditions to be replaced either by Schmidt type slow decrease (or increase) conditions, or by Landau type one-sided Tauberian conditions. Second, we consider complex-valued functions and give a two-sided Tauberian condition which is necessary and sufficient in order that (**) follow from (*). In particular, this condition is satisfied if s(u,v) is slowly oscillating, or if f(x,y) obeys Landau type two-sided Tauberian conditions. At the end, we extend these results to the mixed case, where the (C, 1, 0) mean, that is, the average value of s(w,v) with respect to the first variable over the interval [0,u], is considered instead of $σ_11 (u,v) := σ(u,v)$
            
            
            
          
        
      @article{10_4064_sm_138_1_41_52,
     author = {Ferenc M\'oricz},
     title = {Tauberian theorems for {Ces\`aro} summable double integrals over $\ensuremath{\mathbb{R}}^{2}_{+}$},
     journal = {Studia Mathematica},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-138-1-41-52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-1-41-52/}
}
                      
                      
                    TY  - JOUR
AU  - Ferenc Móricz
TI  - Tauberian theorems for Cesàro summable double integrals over $ℝ^{2}_{+}$
JO  - Studia Mathematica
PY  - 2000
SP  - 41
EP  - 52
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-1-41-52/
DO  - 10.4064/sm-138-1-41-52
LA  - en
ID  - 10_4064_sm_138_1_41_52
ER  - 
                      
                      
                    Ferenc Móricz. Tauberian theorems for Cesàro summable double integrals over $ℝ^{2}_{+}$. Studia Mathematica, Tome 138 (2000) no. 1, pp. 41-52. doi: 10.4064/sm-138-1-41-52
                  
                Cité par Sources :
