Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets
Studia Mathematica, Tome 137 (1999) no. 3, pp. 203-260
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This work deals with various questions concerning Fourier multipliers on $L^p$, Schur multipliers on the Schatten class $S^p$ as well as their completely bounded versions when $L^p$ and $S^p$ are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.
@article{10_4064_sm_137_3_203_260,
author = {Asma Harcharras},
title = {Fourier analysis, {Schur} multipliers on $S^p$ and non-commutative {\ensuremath{\Lambda}(p)-sets}},
journal = {Studia Mathematica},
pages = {203--260},
year = {1999},
volume = {137},
number = {3},
doi = {10.4064/sm-137-3-203-260},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-3-203-260/}
}
TY - JOUR AU - Asma Harcharras TI - Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets JO - Studia Mathematica PY - 1999 SP - 203 EP - 260 VL - 137 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-3-203-260/ DO - 10.4064/sm-137-3-203-260 LA - en ID - 10_4064_sm_137_3_203_260 ER -
Asma Harcharras. Fourier analysis, Schur multipliers on $S^p$ and non-commutative Λ(p)-sets. Studia Mathematica, Tome 137 (1999) no. 3, pp. 203-260. doi: 10.4064/sm-137-3-203-260
Cité par Sources :