An exponential estimate for convolution powers
Studia Mathematica, Tome 137 (1999) no. 2, pp. 195-202

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish an exponential estimate for the relationship between the ergodic maximal function and the maximal operator associated with convolution powers of a probability measure.
DOI : 10.4064/sm-137-2-195-202
Keywords: maximal functions, exponential estimates, convolution powers

Roger L. Jones 1

1
@article{10_4064_sm_137_2_195_202,
     author = {Roger L. Jones},
     title = {An exponential estimate for convolution powers},
     journal = {Studia Mathematica},
     pages = {195--202},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-137-2-195-202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-195-202/}
}
TY  - JOUR
AU  - Roger L. Jones
TI  - An exponential estimate for convolution powers
JO  - Studia Mathematica
PY  - 1999
SP  - 195
EP  - 202
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-195-202/
DO  - 10.4064/sm-137-2-195-202
LA  - en
ID  - 10_4064_sm_137_2_195_202
ER  - 
%0 Journal Article
%A Roger L. Jones
%T An exponential estimate for convolution powers
%J Studia Mathematica
%D 1999
%P 195-202
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-195-202/
%R 10.4064/sm-137-2-195-202
%G en
%F 10_4064_sm_137_2_195_202
Roger L. Jones. An exponential estimate for convolution powers. Studia Mathematica, Tome 137 (1999) no. 2, pp. 195-202. doi: 10.4064/sm-137-2-195-202

Cité par Sources :