Pointwise multiplication operators on weighted Banach spaces of analytic functions
Studia Mathematica, Tome 137 (1999) no. 2, pp. 177-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator $M_φ$, $M_φ(f)=φf$, on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when $M'_φ$ is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map $M'_φ$.
Keywords:
weighted Banach spaces of analytic functions, pointwise multiplication operator, essential norm, closed range, approximative point spectrum, maximal ideal space of $H^∞$, Shilov boundary, Gleason part, hypercyclic operator, chaotic operator
Affiliations des auteurs :
J. Bonet 1 ;  1 ;  1
@article{10_4064_sm_137_2_177_194,
author = {J. Bonet and and },
title = {Pointwise multiplication operators on weighted {Banach} spaces of analytic functions},
journal = {Studia Mathematica},
pages = {177--194},
publisher = {mathdoc},
volume = {137},
number = {2},
year = {1999},
doi = {10.4064/sm-137-2-177-194},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-177-194/}
}
TY - JOUR AU - J. Bonet AU - AU - TI - Pointwise multiplication operators on weighted Banach spaces of analytic functions JO - Studia Mathematica PY - 1999 SP - 177 EP - 194 VL - 137 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-177-194/ DO - 10.4064/sm-137-2-177-194 LA - en ID - 10_4064_sm_137_2_177_194 ER -
%0 Journal Article %A J. Bonet %A %A %T Pointwise multiplication operators on weighted Banach spaces of analytic functions %J Studia Mathematica %D 1999 %P 177-194 %V 137 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-177-194/ %R 10.4064/sm-137-2-177-194 %G en %F 10_4064_sm_137_2_177_194
J. Bonet; ; . Pointwise multiplication operators on weighted Banach spaces of analytic functions. Studia Mathematica, Tome 137 (1999) no. 2, pp. 177-194. doi: 10.4064/sm-137-2-177-194
Cité par Sources :