$H^∞$ functional calculus in real interpolation spaces
Studia Mathematica, Tome 137 (1999) no. 2, pp. 161-167
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and $∥λ(λ I - A)^{-1}∥$ is bounded outside every larger sector) and has a bounded inverse, then A has a bounded $H^∞$ functional calculus in the real interpolation spaces between X and the domain of the operator itself.
@article{10_4064_sm_137_2_161_167,
author = {Giovanni Dore},
title = {$H^\ensuremath{\infty}$ functional calculus in real interpolation spaces},
journal = {Studia Mathematica},
pages = {161--167},
year = {1999},
volume = {137},
number = {2},
doi = {10.4064/sm-137-2-161-167},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-161-167/}
}
Giovanni Dore. $H^∞$ functional calculus in real interpolation spaces. Studia Mathematica, Tome 137 (1999) no. 2, pp. 161-167. doi: 10.4064/sm-137-2-161-167
Cité par Sources :