$H^∞$ functional calculus in real interpolation spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 137 (1999) no. 2, pp. 161-167
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and $∥λ(λ I - A)^{-1}∥$ is bounded outside every larger sector) and has a bounded inverse, then A has a bounded $H^∞$ functional calculus in the real interpolation spaces between X and the domain of the operator itself.
            
            
            
          
        
      @article{10_4064_sm_137_2_161_167,
     author = {Giovanni Dore},
     title = {$H^\ensuremath{\infty}$ functional calculus in real interpolation spaces},
     journal = {Studia Mathematica},
     pages = {161--167},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-137-2-161-167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-161-167/}
}
                      
                      
                    TY - JOUR AU - Giovanni Dore TI - $H^∞$ functional calculus in real interpolation spaces JO - Studia Mathematica PY - 1999 SP - 161 EP - 167 VL - 137 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-161-167/ DO - 10.4064/sm-137-2-161-167 LA - en ID - 10_4064_sm_137_2_161_167 ER -
Giovanni Dore. $H^∞$ functional calculus in real interpolation spaces. Studia Mathematica, Tome 137 (1999) no. 2, pp. 161-167. doi: 10.4064/sm-137-2-161-167
Cité par Sources :
