$H^∞$ functional calculus in real interpolation spaces
Studia Mathematica, Tome 137 (1999) no. 2, pp. 161-167

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and $∥λ(λ I - A)^{-1}∥$ is bounded outside every larger sector) and has a bounded inverse, then A has a bounded $H^∞$ functional calculus in the real interpolation spaces between X and the domain of the operator itself.
DOI : 10.4064/sm-137-2-161-167

Giovanni Dore 1

1
@article{10_4064_sm_137_2_161_167,
     author = {Giovanni Dore},
     title = {$H^\ensuremath{\infty}$ functional calculus in real interpolation spaces},
     journal = {Studia Mathematica},
     pages = {161--167},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-137-2-161-167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-161-167/}
}
TY  - JOUR
AU  - Giovanni Dore
TI  - $H^∞$ functional calculus in real interpolation spaces
JO  - Studia Mathematica
PY  - 1999
SP  - 161
EP  - 167
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-161-167/
DO  - 10.4064/sm-137-2-161-167
LA  - en
ID  - 10_4064_sm_137_2_161_167
ER  - 
%0 Journal Article
%A Giovanni Dore
%T $H^∞$ functional calculus in real interpolation spaces
%J Studia Mathematica
%D 1999
%P 161-167
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-161-167/
%R 10.4064/sm-137-2-161-167
%G en
%F 10_4064_sm_137_2_161_167
Giovanni Dore. $H^∞$ functional calculus in real interpolation spaces. Studia Mathematica, Tome 137 (1999) no. 2, pp. 161-167. doi: 10.4064/sm-137-2-161-167

Cité par Sources :