Isometric extensions, 2-cocycles and ergodicity of skew products
Studia Mathematica, Tome 137 (1999) no. 2, pp. 123-142
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension $T_α$ and admits a prescribed subgroup in the centralizer of $T_α$.
@article{10_4064_sm_137_2_123_142,
author = {Alexandre I. Danilenko and },
title = {Isometric extensions, 2-cocycles and ergodicity of skew products},
journal = {Studia Mathematica},
pages = {123--142},
year = {1999},
volume = {137},
number = {2},
doi = {10.4064/sm-137-2-123-142},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-123-142/}
}
TY - JOUR AU - Alexandre I. Danilenko AU - TI - Isometric extensions, 2-cocycles and ergodicity of skew products JO - Studia Mathematica PY - 1999 SP - 123 EP - 142 VL - 137 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-2-123-142/ DO - 10.4064/sm-137-2-123-142 LA - en ID - 10_4064_sm_137_2_123_142 ER -
Alexandre I. Danilenko; . Isometric extensions, 2-cocycles and ergodicity of skew products. Studia Mathematica, Tome 137 (1999) no. 2, pp. 123-142. doi: 10.4064/sm-137-2-123-142
Cité par Sources :