Wold-type extension for N-tuples of commuting contractions
Studia Mathematica, Tome 137 (1999) no. 1, pp. 81-91
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let (T_1,…,T_N) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V_1,…,V_N) of contractions on a superspace K of ℋ such that each $V_j$ extends $T_j$, j=1,…,N, and the N-tuple (V_1,…,V_N) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the $V_j$ need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])
@article{10_4064_sm_137_1_81_91,
author = {Marek Kosiek and },
title = {Wold-type extension for {N-tuples} of commuting contractions},
journal = {Studia Mathematica},
pages = {81--91},
year = {1999},
volume = {137},
number = {1},
doi = {10.4064/sm-137-1-81-91},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-81-91/}
}
Marek Kosiek; . Wold-type extension for N-tuples of commuting contractions. Studia Mathematica, Tome 137 (1999) no. 1, pp. 81-91. doi: 10.4064/sm-137-1-81-91
Cité par Sources :