Wold-type extension for N-tuples of commuting contractions
Studia Mathematica, Tome 137 (1999) no. 1, pp. 81-91 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let (T_1,…,T_N) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V_1,…,V_N) of contractions on a superspace K of ℋ such that each $V_j$ extends $T_j$, j=1,…,N, and the N-tuple (V_1,…,V_N) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the $V_j$ need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])
DOI : 10.4064/sm-137-1-81-91
Keywords: contractions, dilations, extensions
@article{10_4064_sm_137_1_81_91,
     author = {Marek Kosiek and  },
     title = {Wold-type extension for {N-tuples} of commuting contractions},
     journal = {Studia Mathematica},
     pages = {81--91},
     year = {1999},
     volume = {137},
     number = {1},
     doi = {10.4064/sm-137-1-81-91},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-81-91/}
}
TY  - JOUR
AU  - Marek Kosiek
AU  -  
TI  - Wold-type extension for N-tuples of commuting contractions
JO  - Studia Mathematica
PY  - 1999
SP  - 81
EP  - 91
VL  - 137
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-81-91/
DO  - 10.4064/sm-137-1-81-91
LA  - en
ID  - 10_4064_sm_137_1_81_91
ER  - 
%0 Journal Article
%A Marek Kosiek
%A  
%T Wold-type extension for N-tuples of commuting contractions
%J Studia Mathematica
%D 1999
%P 81-91
%V 137
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-81-91/
%R 10.4064/sm-137-1-81-91
%G en
%F 10_4064_sm_137_1_81_91
Marek Kosiek;  . Wold-type extension for N-tuples of commuting contractions. Studia Mathematica, Tome 137 (1999) no. 1, pp. 81-91. doi: 10.4064/sm-137-1-81-91

Cité par Sources :