On Bell's duality theorem for harmonic functions
Studia Mathematica, Tome 137 (1999) no. 1, pp. 49-60

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Define $h^∞(E)$ as the subspace of $C^∞(B̅L,E)$ consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space $h^{-∞}(E*)$ consisting of all harmonic E*-valued functions g such that $(1-|x|)^mf$ is bounded for some m>0. Then the dual $h^∞(E*)$ is represented by $h^{-∞}(E*)$ through $〈f,g〉_0= lim_{r→1}ʃ_B 〈f(rx),g(x)〉dx$, $f ∈ h^{-∞}(E*),g ∈ h^∞(E)$. This extends the results of S. Bell in the scalar case.
DOI : 10.4064/sm-137-1-49-60

Joaquín Motos 1 ;  1

1
@article{10_4064_sm_137_1_49_60,
     author = {Joaqu{\'\i}n Motos and  },
     title = {On {Bell's} duality theorem for harmonic functions},
     journal = {Studia Mathematica},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-137-1-49-60},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-49-60/}
}
TY  - JOUR
AU  - Joaquín Motos
AU  -  
TI  - On Bell's duality theorem for harmonic functions
JO  - Studia Mathematica
PY  - 1999
SP  - 49
EP  - 60
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-49-60/
DO  - 10.4064/sm-137-1-49-60
LA  - en
ID  - 10_4064_sm_137_1_49_60
ER  - 
%0 Journal Article
%A Joaquín Motos
%A  
%T On Bell's duality theorem for harmonic functions
%J Studia Mathematica
%D 1999
%P 49-60
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-49-60/
%R 10.4064/sm-137-1-49-60
%G en
%F 10_4064_sm_137_1_49_60
Joaquín Motos;  . On Bell's duality theorem for harmonic functions. Studia Mathematica, Tome 137 (1999) no. 1, pp. 49-60. doi: 10.4064/sm-137-1-49-60

Cité par Sources :