On Bell's duality theorem for harmonic functions
Studia Mathematica, Tome 137 (1999) no. 1, pp. 49-60
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Define $h^∞(E)$ as the subspace of $C^∞(B̅L,E)$ consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space $h^{-∞}(E*)$ consisting of all harmonic E*-valued functions g such that $(1-|x|)^mf$ is bounded for some m>0. Then the dual $h^∞(E*)$ is represented by $h^{-∞}(E*)$ through $〈f,g〉_0= lim_{r→1}ʃ_B 〈f(rx),g(x)〉dx$, $f ∈ h^{-∞}(E*),g ∈ h^∞(E)$. This extends the results of S. Bell in the scalar case.
@article{10_4064_sm_137_1_49_60,
author = {Joaqu{\'\i}n Motos and },
title = {On {Bell's} duality theorem for harmonic functions},
journal = {Studia Mathematica},
pages = {49--60},
publisher = {mathdoc},
volume = {137},
number = {1},
year = {1999},
doi = {10.4064/sm-137-1-49-60},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-49-60/}
}
TY - JOUR AU - Joaquín Motos AU - TI - On Bell's duality theorem for harmonic functions JO - Studia Mathematica PY - 1999 SP - 49 EP - 60 VL - 137 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-49-60/ DO - 10.4064/sm-137-1-49-60 LA - en ID - 10_4064_sm_137_1_49_60 ER -
Joaquín Motos; . On Bell's duality theorem for harmonic functions. Studia Mathematica, Tome 137 (1999) no. 1, pp. 49-60. doi: 10.4064/sm-137-1-49-60
Cité par Sources :