Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules
Studia Mathematica, Tome 137 (1999) no. 1, pp. 1-31

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We compute the algebraic and continuous Hochschild cohomology groups of certain Fréchet algebras of analytic functions on a domain U in $ℂ^n$ with coefficients in one-dimensional bimodules. Among the algebras considered, we focus on A=A(U). For this algebra, our results apply if U is smoothly bounded and strictly pseudoconvex, or if U is a product domain.
DOI : 10.4064/sm-137-1-1-31

Olaf Ermert 1

1
@article{10_4064_sm_137_1_1_31,
     author = {Olaf Ermert},
     title = {Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules},
     journal = {Studia Mathematica},
     pages = {1--31},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-137-1-1-31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-1-31/}
}
TY  - JOUR
AU  - Olaf Ermert
TI  - Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules
JO  - Studia Mathematica
PY  - 1999
SP  - 1
EP  - 31
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-1-31/
DO  - 10.4064/sm-137-1-1-31
LA  - en
ID  - 10_4064_sm_137_1_1_31
ER  - 
%0 Journal Article
%A Olaf Ermert
%T Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules
%J Studia Mathematica
%D 1999
%P 1-31
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-137-1-1-31/
%R 10.4064/sm-137-1-1-31
%G en
%F 10_4064_sm_137_1_1_31
Olaf Ermert. Hochschild cohomology groups of certain algebras of analytic functions with coefficients in one-dimensional bimodules. Studia Mathematica, Tome 137 (1999) no. 1, pp. 1-31. doi: 10.4064/sm-137-1-1-31

Cité par Sources :