The Lévy continuity theorem for nuclear groups
Studia Mathematica, Tome 136 (1999) no. 2, pp. 183-196

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be an abelian topological group. The Lévy continuity theorem says that if G is an LCA group, then it has the following property (PL) a sequence of Radon probability measures on G is weakly convergent to a Radon probability measure μ if and only if the corresponding sequence of Fourier transforms is pointwise convergent to the Fourier transform of μ. Boulicaut [Bo] proved that every nuclear locally convex space G has the property (PL). In this paper we prove that the property (PL) is inherited by nuclear groups, a variety of abelian topological groups containing LCA groups and nuclear locally convex spaces, introduced in [B1].
DOI : 10.4064/sm-136-2-183-196
Keywords: Lévy continuity theorem, convergence of probability measures, nuclear groups

W. Banaszczyk 1

1
@article{10_4064_sm_136_2_183_196,
     author = {W. Banaszczyk},
     title = {The {L\'evy} continuity theorem for nuclear groups},
     journal = {Studia Mathematica},
     pages = {183--196},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-136-2-183-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-183-196/}
}
TY  - JOUR
AU  - W. Banaszczyk
TI  - The Lévy continuity theorem for nuclear groups
JO  - Studia Mathematica
PY  - 1999
SP  - 183
EP  - 196
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-183-196/
DO  - 10.4064/sm-136-2-183-196
LA  - en
ID  - 10_4064_sm_136_2_183_196
ER  - 
%0 Journal Article
%A W. Banaszczyk
%T The Lévy continuity theorem for nuclear groups
%J Studia Mathematica
%D 1999
%P 183-196
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-183-196/
%R 10.4064/sm-136-2-183-196
%G en
%F 10_4064_sm_136_2_183_196
W. Banaszczyk. The Lévy continuity theorem for nuclear groups. Studia Mathematica, Tome 136 (1999) no. 2, pp. 183-196. doi: 10.4064/sm-136-2-183-196

Cité par Sources :