Volume ratios in $L_p$-spaces
Studia Mathematica, Tome 136 (1999) no. 2, pp. 147-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
There exists an absolute constant $c_0$ such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that $inf_{ellipsoid ε ⊂ B_E} (vol(B_E)/vol(ε))^{1/n} ≤ c_0 inf_{zonoid Z ⊂ B_F} (vol(B_F)/vol(Z))^{1/k}$ . The concept of volume ratio with respect to $ℓ_p$-spaces is used to prove the following distance estimate for $2≤ q≤ p ∞$: $sup_{F ⊂ ℓ_p, dim F=n} inf_{G ⊂ L_q, dim G=n} d(F,G) ∼_{c_{pq}} n^{(q/2)(1/q-1/p)}$.
@article{10_4064_sm_136_2_147_182,
author = {Yehoram Gordon and },
title = {Volume ratios in $L_p$-spaces},
journal = {Studia Mathematica},
pages = {147--182},
publisher = {mathdoc},
volume = {136},
number = {2},
year = {1999},
doi = {10.4064/sm-136-2-147-182},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-147-182/}
}
Yehoram Gordon; . Volume ratios in $L_p$-spaces. Studia Mathematica, Tome 136 (1999) no. 2, pp. 147-182. doi: 10.4064/sm-136-2-147-182
Cité par Sources :