Volume ratios in $L_p$-spaces
Studia Mathematica, Tome 136 (1999) no. 2, pp. 147-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There exists an absolute constant $c_0$ such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that $inf_{ellipsoid ε ⊂ B_E} (vol(B_E)/vol(ε))^{1/n} ≤ c_0 inf_{zonoid Z ⊂ B_F} (vol(B_F)/vol(Z))^{1/k}$ . The concept of volume ratio with respect to $ℓ_p$-spaces is used to prove the following distance estimate for $2≤ q≤ p ∞$: $sup_{F ⊂ ℓ_p, dim F=n} inf_{G ⊂ L_q, dim G=n} d(F,G) ∼_{c_{pq}} n^{(q/2)(1/q-1/p)}$.
DOI : 10.4064/sm-136-2-147-182

Yehoram Gordon 1 ;  1

1
@article{10_4064_sm_136_2_147_182,
     author = {Yehoram Gordon and  },
     title = {Volume ratios in $L_p$-spaces},
     journal = {Studia Mathematica},
     pages = {147--182},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-136-2-147-182},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-147-182/}
}
TY  - JOUR
AU  - Yehoram Gordon
AU  -  
TI  - Volume ratios in $L_p$-spaces
JO  - Studia Mathematica
PY  - 1999
SP  - 147
EP  - 182
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-147-182/
DO  - 10.4064/sm-136-2-147-182
LA  - fr
ID  - 10_4064_sm_136_2_147_182
ER  - 
%0 Journal Article
%A Yehoram Gordon
%A  
%T Volume ratios in $L_p$-spaces
%J Studia Mathematica
%D 1999
%P 147-182
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-136-2-147-182/
%R 10.4064/sm-136-2-147-182
%G fr
%F 10_4064_sm_136_2_147_182
Yehoram Gordon;  . Volume ratios in $L_p$-spaces. Studia Mathematica, Tome 136 (1999) no. 2, pp. 147-182. doi: 10.4064/sm-136-2-147-182

Cité par Sources :