The triple-norm extension problem: the nondegenerate complete case.
Studia Mathematica, Tome 136 (1999) no. 1, pp. 91-97
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.
@article{10_4064_sm_136_1_91_97,
author = {A. Moreno Galindo},
title = {The triple-norm extension problem: the nondegenerate complete case.},
journal = {Studia Mathematica},
pages = {91--97},
year = {1999},
volume = {136},
number = {1},
doi = {10.4064/sm-136-1-91-97},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-91-97/}
}
TY - JOUR AU - A. Moreno Galindo TI - The triple-norm extension problem: the nondegenerate complete case. JO - Studia Mathematica PY - 1999 SP - 91 EP - 97 VL - 136 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-91-97/ DO - 10.4064/sm-136-1-91-97 LA - en ID - 10_4064_sm_136_1_91_97 ER -
A. Moreno Galindo. The triple-norm extension problem: the nondegenerate complete case.. Studia Mathematica, Tome 136 (1999) no. 1, pp. 91-97. doi: 10.4064/sm-136-1-91-97
Cité par Sources :