Compact endomorphisms of $H^∞(D)$
Studia Mathematica, Tome 136 (1999) no. 1, pp. 87-90

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Compact composition operators on $H^∞(G)$, where G is a region in the complex plane, and the spectra of these operators were described by D. Swanton ( Compact composition operators on B(D), Proc. Amer. Math. Soc. 56 (1976), 152-156). In this short note we characterize all compact endomorphisms, not necessarily those induced by composition operators, on $H^∞(D)$, where D is the unit disc, and determine their spectra.
DOI : 10.4064/sm-136-1-87-90

Joel F. Feinstein 1 ;  1

1
@article{10_4064_sm_136_1_87_90,
     author = {Joel F. Feinstein and  },
     title = {Compact endomorphisms of $H^\ensuremath{\infty}(D)$},
     journal = {Studia Mathematica},
     pages = {87--90},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-136-1-87-90},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-87-90/}
}
TY  - JOUR
AU  - Joel F. Feinstein
AU  -  
TI  - Compact endomorphisms of $H^∞(D)$
JO  - Studia Mathematica
PY  - 1999
SP  - 87
EP  - 90
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-87-90/
DO  - 10.4064/sm-136-1-87-90
LA  - en
ID  - 10_4064_sm_136_1_87_90
ER  - 
%0 Journal Article
%A Joel F. Feinstein
%A  
%T Compact endomorphisms of $H^∞(D)$
%J Studia Mathematica
%D 1999
%P 87-90
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-87-90/
%R 10.4064/sm-136-1-87-90
%G en
%F 10_4064_sm_136_1_87_90
Joel F. Feinstein;  . Compact endomorphisms of $H^∞(D)$. Studia Mathematica, Tome 136 (1999) no. 1, pp. 87-90. doi: 10.4064/sm-136-1-87-90

Cité par Sources :