Kadec norms and Borel sets in a Banach space
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 136 (1999) no. 1, pp. 1-16
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We introduce a property for a couple of topologies that allows us to give simple proofs of some classic results about Borel sets in Banach spaces by Edgar, Schachermayer and Talagrand as well as some new results. We characterize the existence of Kadec type renormings in the spirit of the new results for LUR spaces by Moltó, Orihuela and Troyanski.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Borel sets, Countable cover by sets of local small diameter, Kadec renorming, Radon-Nikodym compact spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              M. Raja 1
@article{10_4064_sm_136_1_1_16,
     author = {M. Raja},
     title = {Kadec norms and {Borel} sets in a {Banach} space},
     journal = {Studia Mathematica},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-136-1-1-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-136-1-1-16/}
}
                      
                      
                    M. Raja. Kadec norms and Borel sets in a Banach space. Studia Mathematica, Tome 136 (1999) no. 1, pp. 1-16. doi: 10.4064/sm-136-1-1-16
Cité par Sources :
