What is "local theory of Banach spaces"?
Studia Mathematica, Tome 135 (1999) no. 3, pp. 273-298

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Banach space theory splits into several subtheories. On the one hand, there are an isometric and an isomorphic part; on the other hand, we speak of global and local aspects. While the concepts of isometry and isomorphy are clear, everybody seems to have its own interpretation of what "local theory" means. In this essay we analyze this situation and propose rigorous definitions, which are based on new concepts of local representability of operators.
DOI : 10.4064/sm-135-3-273-298

Albrecht Pietsch 1

1
@article{10_4064_sm_135_3_273_298,
     author = {Albrecht Pietsch},
     title = {What is "local theory of {Banach} spaces"?},
     journal = {Studia Mathematica},
     pages = {273--298},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-135-3-273-298},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-273-298/}
}
TY  - JOUR
AU  - Albrecht Pietsch
TI  - What is "local theory of Banach spaces"?
JO  - Studia Mathematica
PY  - 1999
SP  - 273
EP  - 298
VL  - 135
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-273-298/
DO  - 10.4064/sm-135-3-273-298
LA  - en
ID  - 10_4064_sm_135_3_273_298
ER  - 
%0 Journal Article
%A Albrecht Pietsch
%T What is "local theory of Banach spaces"?
%J Studia Mathematica
%D 1999
%P 273-298
%V 135
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-273-298/
%R 10.4064/sm-135-3-273-298
%G en
%F 10_4064_sm_135_3_273_298
Albrecht Pietsch. What is "local theory of Banach spaces"?. Studia Mathematica, Tome 135 (1999) no. 3, pp. 273-298. doi: 10.4064/sm-135-3-273-298

Cité par Sources :