Asymptotics for multifractal conservation laws
Studia Mathematica, Tome 135 (1999) no. 3, pp. 231-252

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study asymptotic behavior of solutions to multifractal Burgers-type equation $u_t + f(u)_x = Au$, where the operator A is a linear combination of fractional powers of the second derivative $-∂^2/ ∂ x^2$ and f is a polynomial nonlinearity. Such equations appear in continuum mechanics as models with fractal diffusion. The results include decay rates of the $L^p$-norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as determination of two successive terms of the asymptotic expansion of solutions.
DOI : 10.4064/sm-135-3-231-252
Keywords: generalized Burgers equation, fractal diffusion, asymptotics of solutions

Piotr Biler 1 ;  1 ;  1

1
@article{10_4064_sm_135_3_231_252,
     author = {Piotr Biler and   and  },
     title = {Asymptotics for multifractal conservation laws},
     journal = {Studia Mathematica},
     pages = {231--252},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-135-3-231-252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-231-252/}
}
TY  - JOUR
AU  - Piotr Biler
AU  -  
AU  -  
TI  - Asymptotics for multifractal conservation laws
JO  - Studia Mathematica
PY  - 1999
SP  - 231
EP  - 252
VL  - 135
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-231-252/
DO  - 10.4064/sm-135-3-231-252
LA  - en
ID  - 10_4064_sm_135_3_231_252
ER  - 
%0 Journal Article
%A Piotr Biler
%A  
%A  
%T Asymptotics for multifractal conservation laws
%J Studia Mathematica
%D 1999
%P 231-252
%V 135
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-231-252/
%R 10.4064/sm-135-3-231-252
%G en
%F 10_4064_sm_135_3_231_252
Piotr Biler;  ;  . Asymptotics for multifractal conservation laws. Studia Mathematica, Tome 135 (1999) no. 3, pp. 231-252. doi: 10.4064/sm-135-3-231-252

Cité par Sources :