Nonclassical interpolation in spaces of smooth functions
Studia Mathematica, Tome 135 (1999) no. 3, pp. 203-218
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the fractional BMO space on a one-dimensional manifold is an interpolation space between C and $C^1$. We also prove that $BMO^1$ is an interpolation space between C and $C^2$. The proof is based on some nonclassical interpolation constructions. The results obtained cannot be transferred to spaces of functions defined on manifolds of higher dimension. The interpolation description of fractional BMO spaces is used at the end of the paper for the proof of the boundedness of commutators of the Hilbert transform.
@article{10_4064_sm_135_3_203_218,
author = {Vladimir I. Ovchinnikov},
title = {Nonclassical interpolation in spaces of smooth functions},
journal = {Studia Mathematica},
pages = {203--218},
publisher = {mathdoc},
volume = {135},
number = {3},
year = {1999},
doi = {10.4064/sm-135-3-203-218},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-203-218/}
}
TY - JOUR AU - Vladimir I. Ovchinnikov TI - Nonclassical interpolation in spaces of smooth functions JO - Studia Mathematica PY - 1999 SP - 203 EP - 218 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-3-203-218/ DO - 10.4064/sm-135-3-203-218 LA - en ID - 10_4064_sm_135_3_203_218 ER -
Vladimir I. Ovchinnikov. Nonclassical interpolation in spaces of smooth functions. Studia Mathematica, Tome 135 (1999) no. 3, pp. 203-218. doi: 10.4064/sm-135-3-203-218
Cité par Sources :