Eigenvalue problems with indefinite weight
Studia Mathematica, Tome 135 (1999) no. 2, pp. 191-201

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^{1,2}_0(Ω)$, and its nonlinear generalization $-Δ_{p}u = λV(x)|u|^{p-2}u$, $u ∈ D^{1,p}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.
DOI : 10.4064/sm-135-2-191-201
Keywords: eigenvalue problem, Laplacian, p-Laplacian, indefinite weight

Andrzej Szulkin 1 ;  1

1
@article{10_4064_sm_135_2_191_201,
     author = {Andrzej Szulkin and  },
     title = {Eigenvalue problems with indefinite weight},
     journal = {Studia Mathematica},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-135-2-191-201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-191-201/}
}
TY  - JOUR
AU  - Andrzej Szulkin
AU  -  
TI  - Eigenvalue problems with indefinite weight
JO  - Studia Mathematica
PY  - 1999
SP  - 191
EP  - 201
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-191-201/
DO  - 10.4064/sm-135-2-191-201
LA  - en
ID  - 10_4064_sm_135_2_191_201
ER  - 
%0 Journal Article
%A Andrzej Szulkin
%A  
%T Eigenvalue problems with indefinite weight
%J Studia Mathematica
%D 1999
%P 191-201
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-191-201/
%R 10.4064/sm-135-2-191-201
%G en
%F 10_4064_sm_135_2_191_201
Andrzej Szulkin;  . Eigenvalue problems with indefinite weight. Studia Mathematica, Tome 135 (1999) no. 2, pp. 191-201. doi: 10.4064/sm-135-2-191-201

Cité par Sources :