Eigenvalue problems with indefinite weight
Studia Mathematica, Tome 135 (1999) no. 2, pp. 191-201
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^{1,2}_0(Ω)$, and its nonlinear generalization $-Δ_{p}u = λV(x)|u|^{p-2}u$, $u ∈ D^{1,p}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.
Keywords:
eigenvalue problem, Laplacian, p-Laplacian, indefinite weight
Affiliations des auteurs :
Andrzej Szulkin 1 ;  1
@article{10_4064_sm_135_2_191_201,
author = {Andrzej Szulkin and },
title = {Eigenvalue problems with indefinite weight},
journal = {Studia Mathematica},
pages = {191--201},
publisher = {mathdoc},
volume = {135},
number = {2},
year = {1999},
doi = {10.4064/sm-135-2-191-201},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-191-201/}
}
TY - JOUR AU - Andrzej Szulkin AU - TI - Eigenvalue problems with indefinite weight JO - Studia Mathematica PY - 1999 SP - 191 EP - 201 VL - 135 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-191-201/ DO - 10.4064/sm-135-2-191-201 LA - en ID - 10_4064_sm_135_2_191_201 ER -
Andrzej Szulkin; . Eigenvalue problems with indefinite weight. Studia Mathematica, Tome 135 (1999) no. 2, pp. 191-201. doi: 10.4064/sm-135-2-191-201
Cité par Sources :