Eigenvalue problems with indefinite weight
Studia Mathematica, Tome 135 (1999) no. 2, pp. 191-201
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^{1,2}_0(Ω)$, and its nonlinear generalization $-Δ_{p}u = λV(x)|u|^{p-2}u$, $u ∈ D^{1,p}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.
Keywords:
eigenvalue problem, Laplacian, p-Laplacian, indefinite weight
@article{10_4064_sm_135_2_191_201,
author = {Andrzej Szulkin and },
title = {Eigenvalue problems with indefinite weight},
journal = {Studia Mathematica},
pages = {191--201},
year = {1999},
volume = {135},
number = {2},
doi = {10.4064/sm-135-2-191-201},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-191-201/}
}
Andrzej Szulkin; . Eigenvalue problems with indefinite weight. Studia Mathematica, Tome 135 (1999) no. 2, pp. 191-201. doi: 10.4064/sm-135-2-191-201
Cité par Sources :