Spectrum for a solvable Lie algebra of operators
Studia Mathematica, Tome 135 (1999) no. 2, pp. 163-178 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A new concept of spectrum for a solvable Lie algebra of operators is introduced, extending the Taylor spectrum for commuting tuples. This spectrum has the projection property on any Lie subalgebra and, for algebras of compact operators, it may be computed by means of a variant of the classical Ringrose theorem.
@article{10_4064_sm_135_2_163_178,
     author = {Daniel Belti\c{t}\u{a}},
     title = {Spectrum for a solvable {Lie} algebra of operators},
     journal = {Studia Mathematica},
     pages = {163--178},
     year = {1999},
     volume = {135},
     number = {2},
     doi = {10.4064/sm-135-2-163-178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-163-178/}
}
TY  - JOUR
AU  - Daniel Beltiţă
TI  - Spectrum for a solvable Lie algebra of operators
JO  - Studia Mathematica
PY  - 1999
SP  - 163
EP  - 178
VL  - 135
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-163-178/
DO  - 10.4064/sm-135-2-163-178
LA  - en
ID  - 10_4064_sm_135_2_163_178
ER  - 
%0 Journal Article
%A Daniel Beltiţă
%T Spectrum for a solvable Lie algebra of operators
%J Studia Mathematica
%D 1999
%P 163-178
%V 135
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-2-163-178/
%R 10.4064/sm-135-2-163-178
%G en
%F 10_4064_sm_135_2_163_178
Daniel Beltiţă. Spectrum for a solvable Lie algebra of operators. Studia Mathematica, Tome 135 (1999) no. 2, pp. 163-178. doi: 10.4064/sm-135-2-163-178

Cité par Sources :