On spreading $c_0$-sequences in Banach spaces
Studia Mathematica, Tome 135 (1999) no. 1, pp. 83-102

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce and study the spreading-(s) and the spreading-(u) property of a Banach space and their relations. A space has the spreading-(s) property if every normalized weakly null sequence has a subsequence with a spreading model equivalent to the usual basis of $c_0$; while it has the spreading-(u) property if every weak Cauchy and non-weakly convergent sequence has a convex block subsequence with a spreading model equivalent to the summing basis of $c_0$. The main results proved are the following: (a) A Banach space X has the spreading-(s) property if and only if for every subspace Y of X and for every pair of sequences (x_n) in Y and $(x*_n)$ in Y*, with(x_n) weakly null in Y and $(x_n*)$ uniformly weakly null in Y* (in the sense of Mercourakis), we have $x*_n(x_n) → 0$ (i.e. X has a hereditary weak Dunford-Pettis property). (b) A Banach space X has the spreading-(u) property if and only if $B_1(X) ⊆ B_{1/4}(X)$ in the sense of the classification of Baire-1 elements of X** according to Haydon-Odell-Rosenthal. (c) The spreading-(s) property implies the spreading-(u) property. Result (c), proved via infinite combinations, connects an internal condition on a Banach space with an external one.
DOI : 10.4064/sm-135-1-83-102

Vassiliki Farmaki 1

1
@article{10_4064_sm_135_1_83_102,
     author = {Vassiliki Farmaki},
     title = {On spreading $c_0$-sequences in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {83--102},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-135-1-83-102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-83-102/}
}
TY  - JOUR
AU  - Vassiliki Farmaki
TI  - On spreading $c_0$-sequences in Banach spaces
JO  - Studia Mathematica
PY  - 1999
SP  - 83
EP  - 102
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-83-102/
DO  - 10.4064/sm-135-1-83-102
LA  - en
ID  - 10_4064_sm_135_1_83_102
ER  - 
%0 Journal Article
%A Vassiliki Farmaki
%T On spreading $c_0$-sequences in Banach spaces
%J Studia Mathematica
%D 1999
%P 83-102
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-83-102/
%R 10.4064/sm-135-1-83-102
%G en
%F 10_4064_sm_135_1_83_102
Vassiliki Farmaki. On spreading $c_0$-sequences in Banach spaces. Studia Mathematica, Tome 135 (1999) no. 1, pp. 83-102. doi: 10.4064/sm-135-1-83-102

Cité par Sources :