Averages of uniformly continuous retractions
Studia Mathematica, Tome 135 (1999) no. 1, pp. 75-81

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly retractions of B onto S. Moreover, for every 0≤ r 1, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.
DOI : 10.4064/sm-135-1-75-81
Keywords: uniformly retraction, Lipschitz retraction, extreme point

A. Jiménez-Vargas 1 ;  1 ;  1 ;  1

1
@article{10_4064_sm_135_1_75_81,
     author = {A. Jim\'enez-Vargas and   and   and  },
     title = {Averages of uniformly continuous retractions},
     journal = {Studia Mathematica},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-135-1-75-81},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-75-81/}
}
TY  - JOUR
AU  - A. Jiménez-Vargas
AU  -  
AU  -  
AU  -  
TI  - Averages of uniformly continuous retractions
JO  - Studia Mathematica
PY  - 1999
SP  - 75
EP  - 81
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-75-81/
DO  - 10.4064/sm-135-1-75-81
LA  - en
ID  - 10_4064_sm_135_1_75_81
ER  - 
%0 Journal Article
%A A. Jiménez-Vargas
%A  
%A  
%A  
%T Averages of uniformly continuous retractions
%J Studia Mathematica
%D 1999
%P 75-81
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-75-81/
%R 10.4064/sm-135-1-75-81
%G en
%F 10_4064_sm_135_1_75_81
A. Jiménez-Vargas;  ;  ;  . Averages of uniformly continuous retractions. Studia Mathematica, Tome 135 (1999) no. 1, pp. 75-81. doi: 10.4064/sm-135-1-75-81

Cité par Sources :