Normal Hilbert modules over the ball algebra A(B)
Studia Mathematica, Tome 135 (1999) no. 1, pp. 1-12

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The normal cohomology functor $Ext_ℵ$ is introduced from the category of all normal Hilbert modules over the ball algebra to the category of A(B)-modules. From the calculation of $Ext_ℵ$-groups, we show that every normal C(∂B)-extension of a normal Hilbert module (viewed as a Hilbert module over A(B) is normal projective and normal injective. It follows that there is a natural isomorphism between Hom of normal Shilov modules and that of their quotient modules, which is a new lifting theorem of normal Shilov modules. Finally, these results are applied to the discussion of rigidity and extensions of Hardy submodules over the ball algebra.
DOI : 10.4064/sm-135-1-1-12

Kunyu Guo 1

1
@article{10_4064_sm_135_1_1_12,
     author = {Kunyu Guo},
     title = {Normal {Hilbert} modules over the ball algebra {A(B)}},
     journal = {Studia Mathematica},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-135-1-1-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-1-12/}
}
TY  - JOUR
AU  - Kunyu Guo
TI  - Normal Hilbert modules over the ball algebra A(B)
JO  - Studia Mathematica
PY  - 1999
SP  - 1
EP  - 12
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-1-12/
DO  - 10.4064/sm-135-1-1-12
LA  - en
ID  - 10_4064_sm_135_1_1_12
ER  - 
%0 Journal Article
%A Kunyu Guo
%T Normal Hilbert modules over the ball algebra A(B)
%J Studia Mathematica
%D 1999
%P 1-12
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-135-1-1-12/
%R 10.4064/sm-135-1-1-12
%G en
%F 10_4064_sm_135_1_1_12
Kunyu Guo. Normal Hilbert modules over the ball algebra A(B). Studia Mathematica, Tome 135 (1999) no. 1, pp. 1-12. doi: 10.4064/sm-135-1-1-12

Cité par Sources :