Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$
Studia Mathematica, Tome 134 (1999) no. 3, pp. 269-298

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the boundedness in $L^p(\mathbb S^n)$ of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in $L^p(\mathbb S^n)$ with spectrum included in these horizontal strips.
DOI : 10.4064/sm-134-3-269-298
Keywords: harmonic and holomorphic functions, tangential convergence

Carme Cascante 1 ; Joaquim M. Ortega 1

1
@article{10_4064_sm_134_3_269_298,
     author = {Carme Cascante and Joaquim M. Ortega},
     title = {Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$},
     journal = {Studia Mathematica},
     pages = {269--298},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-134-3-269-298},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-269-298/}
}
TY  - JOUR
AU  - Carme Cascante
AU  - Joaquim M. Ortega
TI  - Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$
JO  - Studia Mathematica
PY  - 1999
SP  - 269
EP  - 298
VL  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-269-298/
DO  - 10.4064/sm-134-3-269-298
LA  - en
ID  - 10_4064_sm_134_3_269_298
ER  - 
%0 Journal Article
%A Carme Cascante
%A Joaquim M. Ortega
%T Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$
%J Studia Mathematica
%D 1999
%P 269-298
%V 134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-269-298/
%R 10.4064/sm-134-3-269-298
%G en
%F 10_4064_sm_134_3_269_298
Carme Cascante; Joaquim M. Ortega. Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$. Studia Mathematica, Tome 134 (1999) no. 3, pp. 269-298. doi: 10.4064/sm-134-3-269-298

Cité par Sources :