Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$
Studia Mathematica, Tome 134 (1999) no. 3, pp. 269-298
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the boundedness in $L^p(\mathbb S^n)$ of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in $L^p(\mathbb S^n)$ with spectrum included in these horizontal strips.
Keywords:
harmonic and holomorphic functions, tangential convergence
Affiliations des auteurs :
Carme Cascante 1 ; Joaquim M. Ortega 1
@article{10_4064_sm_134_3_269_298,
author = {Carme Cascante and Joaquim M. Ortega},
title = {Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$},
journal = {Studia Mathematica},
pages = {269--298},
publisher = {mathdoc},
volume = {134},
number = {3},
year = {1999},
doi = {10.4064/sm-134-3-269-298},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-269-298/}
}
TY - JOUR AU - Carme Cascante AU - Joaquim M. Ortega TI - Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$ JO - Studia Mathematica PY - 1999 SP - 269 EP - 298 VL - 134 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-269-298/ DO - 10.4064/sm-134-3-269-298 LA - en ID - 10_4064_sm_134_3_269_298 ER -
%0 Journal Article %A Carme Cascante %A Joaquim M. Ortega %T Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$ %J Studia Mathematica %D 1999 %P 269-298 %V 134 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-269-298/ %R 10.4064/sm-134-3-269-298 %G en %F 10_4064_sm_134_3_269_298
Carme Cascante; Joaquim M. Ortega. Convergence in nonisotropic regions of harmonic functions in $\mathbb B^n$. Studia Mathematica, Tome 134 (1999) no. 3, pp. 269-298. doi: 10.4064/sm-134-3-269-298
Cité par Sources :