Embedding of random vectors into continuous martingales
Studia Mathematica, Tome 134 (1999) no. 3, pp. 251-268
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let E be a real, separable Banach space and denote by $L^0(Ω,E)$ the space of all E-valued random vectors defined on the probability space Ω. The following result is proved. There exists an extension ${\widetilde Ω}$ of Ω, and a filtration $({\widetilde ℱ}_t)_{t≥0}$ on ${\widetilde Ω}$, such that for every $X ∈ L^0(Ω,E)$ there is an E-valued, continuous $({\widetilde ℱ}_t)$-martingale $(M_t(X))_{t≥0}$ in which X is embedded in the sense that $X = M_τ(X)$ a.s. for an a.s. finite stopping time τ. For E = ℝ this gives a Skorokhod embedding for all $X ∈ L^0(Ω,ℝ)$, and for general E this leads to a representation of random vectors as stochastic integrals relative to a Brownian motion.
Keywords:
Skorokhod embedding, martingale, stochastic integral, Brownian motion
@article{10_4064_sm_134_3_251_268,
author = {E. Dettweiler},
title = {Embedding of random vectors into continuous martingales},
journal = {Studia Mathematica},
pages = {251--268},
year = {1999},
volume = {134},
number = {3},
doi = {10.4064/sm-134-3-251-268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-251-268/}
}
E. Dettweiler. Embedding of random vectors into continuous martingales. Studia Mathematica, Tome 134 (1999) no. 3, pp. 251-268. doi: 10.4064/sm-134-3-251-268
Cité par Sources :