Implicit functions from locally convex spaces to Banach spaces
Studia Mathematica, Tome 134 (1999) no. 3, pp. 235-250
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller $C_Π^k$-map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.
@article{10_4064_sm_134_3_235_250,
author = {Seppo Hiltunen},
title = {Implicit functions from locally convex spaces to {Banach} spaces},
journal = {Studia Mathematica},
pages = {235--250},
year = {1999},
volume = {134},
number = {3},
doi = {10.4064/sm-134-3-235-250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/}
}
TY - JOUR AU - Seppo Hiltunen TI - Implicit functions from locally convex spaces to Banach spaces JO - Studia Mathematica PY - 1999 SP - 235 EP - 250 VL - 134 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/ DO - 10.4064/sm-134-3-235-250 LA - en ID - 10_4064_sm_134_3_235_250 ER -
Seppo Hiltunen. Implicit functions from locally convex spaces to Banach spaces. Studia Mathematica, Tome 134 (1999) no. 3, pp. 235-250. doi: 10.4064/sm-134-3-235-250
Cité par Sources :