Implicit functions from locally convex spaces to Banach spaces
Studia Mathematica, Tome 134 (1999) no. 3, pp. 235-250

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller $C_Π^k$-map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.
DOI : 10.4064/sm-134-3-235-250

Seppo Hiltunen 1

1
@article{10_4064_sm_134_3_235_250,
     author = {Seppo Hiltunen},
     title = {Implicit functions from locally convex spaces to {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {235--250},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-134-3-235-250},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/}
}
TY  - JOUR
AU  - Seppo Hiltunen
TI  - Implicit functions from locally convex spaces to Banach spaces
JO  - Studia Mathematica
PY  - 1999
SP  - 235
EP  - 250
VL  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/
DO  - 10.4064/sm-134-3-235-250
LA  - en
ID  - 10_4064_sm_134_3_235_250
ER  - 
%0 Journal Article
%A Seppo Hiltunen
%T Implicit functions from locally convex spaces to Banach spaces
%J Studia Mathematica
%D 1999
%P 235-250
%V 134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/
%R 10.4064/sm-134-3-235-250
%G en
%F 10_4064_sm_134_3_235_250
Seppo Hiltunen. Implicit functions from locally convex spaces to Banach spaces. Studia Mathematica, Tome 134 (1999) no. 3, pp. 235-250. doi: 10.4064/sm-134-3-235-250

Cité par Sources :