Implicit functions from locally convex spaces to Banach spaces
Studia Mathematica, Tome 134 (1999) no. 3, pp. 235-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller $C_Π^k$-map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.
@article{10_4064_sm_134_3_235_250,
author = {Seppo Hiltunen},
title = {Implicit functions from locally convex spaces to {Banach} spaces},
journal = {Studia Mathematica},
pages = {235--250},
publisher = {mathdoc},
volume = {134},
number = {3},
year = {1999},
doi = {10.4064/sm-134-3-235-250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/}
}
TY - JOUR AU - Seppo Hiltunen TI - Implicit functions from locally convex spaces to Banach spaces JO - Studia Mathematica PY - 1999 SP - 235 EP - 250 VL - 134 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-235-250/ DO - 10.4064/sm-134-3-235-250 LA - en ID - 10_4064_sm_134_3_235_250 ER -
Seppo Hiltunen. Implicit functions from locally convex spaces to Banach spaces. Studia Mathematica, Tome 134 (1999) no. 3, pp. 235-250. doi: 10.4064/sm-134-3-235-250
Cité par Sources :