The Conley index in Hilbert spaces and its applications
Studia Mathematica, Tome 134 (1999) no. 3, pp. 217-233
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present a generalization of the classical Conley index defined for flows on locally compact spaces to flows on an infinite-dimensional real Hilbert space H generated by vector fields of the form f: H → H, f(x) = Lx + K(x), where L: H → H is a bounded linear operator satisfying some technical assumptions and K is a completely continuous perturbation. Simple examples are presented to show how this new invariant can be applied in searching critical points of strongly indefinite functionals having asymptotically linear gradient.
@article{10_4064_sm_134_3_217_233,
author = {K G\k{e}ba and M. Izydorek and A. Pruszko},
title = {The {Conley} index in {Hilbert} spaces and its applications},
journal = {Studia Mathematica},
pages = {217--233},
year = {1999},
volume = {134},
number = {3},
doi = {10.4064/sm-134-3-217-233},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-217-233/}
}
TY - JOUR AU - K Gęba AU - M. Izydorek AU - A. Pruszko TI - The Conley index in Hilbert spaces and its applications JO - Studia Mathematica PY - 1999 SP - 217 EP - 233 VL - 134 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-217-233/ DO - 10.4064/sm-134-3-217-233 LA - en ID - 10_4064_sm_134_3_217_233 ER -
K Gęba; M. Izydorek; A. Pruszko. The Conley index in Hilbert spaces and its applications. Studia Mathematica, Tome 134 (1999) no. 3, pp. 217-233. doi: 10.4064/sm-134-3-217-233
Cité par Sources :