On the representation of functions by orthogonal series in weighted $L^p$ spaces
Studia Mathematica, Tome 134 (1999) no. 3, pp. 207-216
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that if ${φ_n}$ is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form $∑^{∞}_{k=1} c_{k}φ_{k}(x)$, where ${c_k} ∈ l_q$ for all q>2, with the following properties: 1. For any p ∈ [1,2) and $f ∈ L^{p}_{μ}[0,1] = {f:ʃ^{1}_{0}|f(x)|^{p} μ(x)dx ∞}$ there are numbers $ɛ_k$, k=1,2,…, $ɛ_k$ = 1 or 0, such that $lim_{n→∞} ʃ^{1}_{0}|∑^n_{k=1}ɛ_{k}c_{k}φ_{k}(x)-f(x)|^{p} μ(x)dx = 0.$ 2. For every p ∈ [1,2) and $f ∈ L^p_μ[0,1]$ there are a function $g ∈ L^1[0,1]$ with g(x) = f(x) on E and numbers $δ_{k}$, k=1,2,…, $δ_{k}=1$ or 0, such that $lim_{n→∞} ʃ^{1}_{0}|∑^n_{k=1}δ_{k}c_{k}φ_{k}(x) - g(x)|^{p} μ(x)dx=0$, where $δ_{k}c_{k}=ʃ^1_0g(t)φ_{k}(t)dt.$
@article{10_4064_sm_134_3_207_216,
author = {M. Grigorian},
title = {On the representation of functions by orthogonal series in weighted $L^p$ spaces},
journal = {Studia Mathematica},
pages = {207--216},
publisher = {mathdoc},
volume = {134},
number = {3},
year = {1999},
doi = {10.4064/sm-134-3-207-216},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-207-216/}
}
TY - JOUR AU - M. Grigorian TI - On the representation of functions by orthogonal series in weighted $L^p$ spaces JO - Studia Mathematica PY - 1999 SP - 207 EP - 216 VL - 134 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-207-216/ DO - 10.4064/sm-134-3-207-216 LA - en ID - 10_4064_sm_134_3_207_216 ER -
%0 Journal Article %A M. Grigorian %T On the representation of functions by orthogonal series in weighted $L^p$ spaces %J Studia Mathematica %D 1999 %P 207-216 %V 134 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-207-216/ %R 10.4064/sm-134-3-207-216 %G en %F 10_4064_sm_134_3_207_216
M. Grigorian. On the representation of functions by orthogonal series in weighted $L^p$ spaces. Studia Mathematica, Tome 134 (1999) no. 3, pp. 207-216. doi: 10.4064/sm-134-3-207-216
Cité par Sources :