On the representation of functions by orthogonal series in weighted $L^p$ spaces
Studia Mathematica, Tome 134 (1999) no. 3, pp. 207-216

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that if ${φ_n}$ is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form $∑^{∞}_{k=1} c_{k}φ_{k}(x)$, where ${c_k} ∈ l_q$ for all q>2, with the following properties: 1. For any p ∈ [1,2) and $f ∈ L^{p}_{μ}[0,1] = {f:ʃ^{1}_{0}|f(x)|^{p} μ(x)dx ∞}$ there are numbers $ɛ_k$, k=1,2,…, $ɛ_k$ = 1 or 0, such that $lim_{n→∞} ʃ^{1}_{0}|∑^n_{k=1}ɛ_{k}c_{k}φ_{k}(x)-f(x)|^{p} μ(x)dx = 0.$ 2. For every p ∈ [1,2) and $f ∈ L^p_μ[0,1]$ there are a function $g ∈ L^1[0,1]$ with g(x) = f(x) on E and numbers $δ_{k}$, k=1,2,…, $δ_{k}=1$ or 0, such that $lim_{n→∞} ʃ^{1}_{0}|∑^n_{k=1}δ_{k}c_{k}φ_{k}(x) - g(x)|^{p} μ(x)dx=0$, where $δ_{k}c_{k}=ʃ^1_0g(t)φ_{k}(t)dt.$
DOI : 10.4064/sm-134-3-207-216

M. Grigorian 1

1
@article{10_4064_sm_134_3_207_216,
     author = {M. Grigorian},
     title = {On the representation of functions by orthogonal series in weighted $L^p$ spaces},
     journal = {Studia Mathematica},
     pages = {207--216},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-134-3-207-216},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-207-216/}
}
TY  - JOUR
AU  - M. Grigorian
TI  - On the representation of functions by orthogonal series in weighted $L^p$ spaces
JO  - Studia Mathematica
PY  - 1999
SP  - 207
EP  - 216
VL  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-207-216/
DO  - 10.4064/sm-134-3-207-216
LA  - en
ID  - 10_4064_sm_134_3_207_216
ER  - 
%0 Journal Article
%A M. Grigorian
%T On the representation of functions by orthogonal series in weighted $L^p$ spaces
%J Studia Mathematica
%D 1999
%P 207-216
%V 134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-3-207-216/
%R 10.4064/sm-134-3-207-216
%G en
%F 10_4064_sm_134_3_207_216
M. Grigorian. On the representation of functions by orthogonal series in weighted $L^p$ spaces. Studia Mathematica, Tome 134 (1999) no. 3, pp. 207-216. doi: 10.4064/sm-134-3-207-216

Cité par Sources :