Maps on matrices that preserve the spectral radius distance
Studia Mathematica, Tome 134 (1999) no. 2, pp. 99-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ϕ be a surjective map on the space of n×n complex matrices such that r(ϕ(A)-ϕ(B))=r(A-B) for all A,B, where r(X) is the spectral radius of X. We show that ϕ must be a composition of five types of maps: translation, multiplication by a scalar of modulus one, complex conjugation, taking transpose and (simultaneous) similarity. In particular, ϕ is real linear up to a translation.
Affiliations des auteurs :
Rajendra Bhatia 1 ; Peter Šemrl 1 ; A. R. Sourour 1
@article{10_4064_sm_134_2_99_110,
author = {Rajendra Bhatia and Peter \v{S}emrl and A. R. Sourour},
title = {Maps on matrices that preserve the spectral radius distance},
journal = {Studia Mathematica},
pages = {99--110},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {1999},
doi = {10.4064/sm-134-2-99-110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-99-110/}
}
TY - JOUR AU - Rajendra Bhatia AU - Peter Šemrl AU - A. R. Sourour TI - Maps on matrices that preserve the spectral radius distance JO - Studia Mathematica PY - 1999 SP - 99 EP - 110 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-99-110/ DO - 10.4064/sm-134-2-99-110 LA - en ID - 10_4064_sm_134_2_99_110 ER -
%0 Journal Article %A Rajendra Bhatia %A Peter Šemrl %A A. R. Sourour %T Maps on matrices that preserve the spectral radius distance %J Studia Mathematica %D 1999 %P 99-110 %V 134 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-99-110/ %R 10.4064/sm-134-2-99-110 %G en %F 10_4064_sm_134_2_99_110
Rajendra Bhatia; Peter Šemrl; A. R. Sourour. Maps on matrices that preserve the spectral radius distance. Studia Mathematica, Tome 134 (1999) no. 2, pp. 99-110. doi: 10.4064/sm-134-2-99-110
Cité par Sources :