Norm continuity of $c_0$-semigroups
Studia Mathematica, Tome 134 (1999) no. 2, pp. 169-178
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that a positive semigroup $T_t$ on $L_p(Ω,ν)$ with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of "smoothing properties" of certain convolution operators on general Banach spaces and an extrapolation result for the $L_p$-scale, which may be of independent interest.
@article{10_4064_sm_134_2_169_178,
author = {V. Goersmeyer and L. Weis},
title = {Norm continuity of $c_0$-semigroups},
journal = {Studia Mathematica},
pages = {169--178},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {1999},
doi = {10.4064/sm-134-2-169-178},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-169-178/}
}
TY - JOUR AU - V. Goersmeyer AU - L. Weis TI - Norm continuity of $c_0$-semigroups JO - Studia Mathematica PY - 1999 SP - 169 EP - 178 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-169-178/ DO - 10.4064/sm-134-2-169-178 LA - en ID - 10_4064_sm_134_2_169_178 ER -
V. Goersmeyer; L. Weis. Norm continuity of $c_0$-semigroups. Studia Mathematica, Tome 134 (1999) no. 2, pp. 169-178. doi: 10.4064/sm-134-2-169-178
Cité par Sources :