Norm continuity of $c_0$-semigroups
Studia Mathematica, Tome 134 (1999) no. 2, pp. 169-178

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that a positive semigroup $T_t$ on $L_p(Ω,ν)$ with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of "smoothing properties" of certain convolution operators on general Banach spaces and an extrapolation result for the $L_p$-scale, which may be of independent interest.
DOI : 10.4064/sm-134-2-169-178

V. Goersmeyer 1 ; L. Weis 1

1
@article{10_4064_sm_134_2_169_178,
     author = {V. Goersmeyer and L. Weis},
     title = {Norm continuity of $c_0$-semigroups},
     journal = {Studia Mathematica},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-134-2-169-178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-169-178/}
}
TY  - JOUR
AU  - V. Goersmeyer
AU  - L. Weis
TI  - Norm continuity of $c_0$-semigroups
JO  - Studia Mathematica
PY  - 1999
SP  - 169
EP  - 178
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-169-178/
DO  - 10.4064/sm-134-2-169-178
LA  - en
ID  - 10_4064_sm_134_2_169_178
ER  - 
%0 Journal Article
%A V. Goersmeyer
%A L. Weis
%T Norm continuity of $c_0$-semigroups
%J Studia Mathematica
%D 1999
%P 169-178
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-169-178/
%R 10.4064/sm-134-2-169-178
%G en
%F 10_4064_sm_134_2_169_178
V. Goersmeyer; L. Weis. Norm continuity of $c_0$-semigroups. Studia Mathematica, Tome 134 (1999) no. 2, pp. 169-178. doi: 10.4064/sm-134-2-169-178

Cité par Sources :