A resolvent condition implying power boundedness
Studia Mathematica, Tome 134 (1999) no. 2, pp. 143-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Ritt and Kreiss resolvent conditions are related to the behaviour of the powers and their various means. In particular, it is shown that the Ritt condition implies the power boundedness. This improves the Nevanlinna characterization of the sublinear decay of the differences of the consecutive powers in the Esterle-Katznelson-Tzafriri theorem, and actually characterizes the analytic Ritt condition by two geometric properties of the powers.
Affiliations des auteurs :
Béla Nagy 1 ; Jaroslav Zemánek 1
@article{10_4064_sm_134_2_143_151,
author = {B\'ela Nagy and Jaroslav Zem\'anek},
title = {A resolvent condition implying power boundedness},
journal = {Studia Mathematica},
pages = {143--151},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {1999},
doi = {10.4064/sm-134-2-143-151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-143-151/}
}
TY - JOUR AU - Béla Nagy AU - Jaroslav Zemánek TI - A resolvent condition implying power boundedness JO - Studia Mathematica PY - 1999 SP - 143 EP - 151 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-143-151/ DO - 10.4064/sm-134-2-143-151 LA - en ID - 10_4064_sm_134_2_143_151 ER -
Béla Nagy; Jaroslav Zemánek. A resolvent condition implying power boundedness. Studia Mathematica, Tome 134 (1999) no. 2, pp. 143-151. doi: 10.4064/sm-134-2-143-151
Cité par Sources :