A resolvent condition implying power boundedness
Studia Mathematica, Tome 134 (1999) no. 2, pp. 143-151

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Ritt and Kreiss resolvent conditions are related to the behaviour of the powers and their various means. In particular, it is shown that the Ritt condition implies the power boundedness. This improves the Nevanlinna characterization of the sublinear decay of the differences of the consecutive powers in the Esterle-Katznelson-Tzafriri theorem, and actually characterizes the analytic Ritt condition by two geometric properties of the powers.
DOI : 10.4064/sm-134-2-143-151

Béla Nagy 1 ; Jaroslav Zemánek 1

1
@article{10_4064_sm_134_2_143_151,
     author = {B\'ela Nagy and Jaroslav Zem\'anek},
     title = {A resolvent condition implying power boundedness},
     journal = {Studia Mathematica},
     pages = {143--151},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-134-2-143-151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-143-151/}
}
TY  - JOUR
AU  - Béla Nagy
AU  - Jaroslav Zemánek
TI  - A resolvent condition implying power boundedness
JO  - Studia Mathematica
PY  - 1999
SP  - 143
EP  - 151
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-143-151/
DO  - 10.4064/sm-134-2-143-151
LA  - en
ID  - 10_4064_sm_134_2_143_151
ER  - 
%0 Journal Article
%A Béla Nagy
%A Jaroslav Zemánek
%T A resolvent condition implying power boundedness
%J Studia Mathematica
%D 1999
%P 143-151
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-143-151/
%R 10.4064/sm-134-2-143-151
%G en
%F 10_4064_sm_134_2_143_151
Béla Nagy; Jaroslav Zemánek. A resolvent condition implying power boundedness. Studia Mathematica, Tome 134 (1999) no. 2, pp. 143-151. doi: 10.4064/sm-134-2-143-151

Cité par Sources :