The real-analytic solutions of the Abel functional equation
Studia Mathematica, Tome 134 (1999) no. 2, pp. 135-141

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For the Abel equation on a real-analytic manifold a dynamical criterion of solvability in real-analytic functions is proved.
DOI : 10.4064/sm-134-2-135-141

G Belitskii 1 ; Yu. Lyubich 1

1
@article{10_4064_sm_134_2_135_141,
     author = {G Belitskii and Yu. Lyubich},
     title = {The real-analytic solutions of the {Abel} functional equation},
     journal = {Studia Mathematica},
     pages = {135--141},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-134-2-135-141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-135-141/}
}
TY  - JOUR
AU  - G Belitskii
AU  - Yu. Lyubich
TI  - The real-analytic solutions of the Abel functional equation
JO  - Studia Mathematica
PY  - 1999
SP  - 135
EP  - 141
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-135-141/
DO  - 10.4064/sm-134-2-135-141
LA  - en
ID  - 10_4064_sm_134_2_135_141
ER  - 
%0 Journal Article
%A G Belitskii
%A Yu. Lyubich
%T The real-analytic solutions of the Abel functional equation
%J Studia Mathematica
%D 1999
%P 135-141
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-135-141/
%R 10.4064/sm-134-2-135-141
%G en
%F 10_4064_sm_134_2_135_141
G Belitskii; Yu. Lyubich. The real-analytic solutions of the Abel functional equation. Studia Mathematica, Tome 134 (1999) no. 2, pp. 135-141. doi: 10.4064/sm-134-2-135-141

Cité par Sources :