The real-analytic solutions of the Abel functional equation
Studia Mathematica, Tome 134 (1999) no. 2, pp. 135-141
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For the Abel equation on a real-analytic manifold a dynamical criterion of solvability in real-analytic functions is proved.
Affiliations des auteurs :
G Belitskii 1 ; Yu. Lyubich 1
@article{10_4064_sm_134_2_135_141,
author = {G Belitskii and Yu. Lyubich},
title = {The real-analytic solutions of the {Abel} functional equation},
journal = {Studia Mathematica},
pages = {135--141},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {1999},
doi = {10.4064/sm-134-2-135-141},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-135-141/}
}
TY - JOUR AU - G Belitskii AU - Yu. Lyubich TI - The real-analytic solutions of the Abel functional equation JO - Studia Mathematica PY - 1999 SP - 135 EP - 141 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-135-141/ DO - 10.4064/sm-134-2-135-141 LA - en ID - 10_4064_sm_134_2_135_141 ER -
%0 Journal Article %A G Belitskii %A Yu. Lyubich %T The real-analytic solutions of the Abel functional equation %J Studia Mathematica %D 1999 %P 135-141 %V 134 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-2-135-141/ %R 10.4064/sm-134-2-135-141 %G en %F 10_4064_sm_134_2_135_141
G Belitskii; Yu. Lyubich. The real-analytic solutions of the Abel functional equation. Studia Mathematica, Tome 134 (1999) no. 2, pp. 135-141. doi: 10.4064/sm-134-2-135-141
Cité par Sources :