On coerciveness in Besov spaces for abstract parabolic equations of higher order
Studia Mathematica, Tome 134 (1999) no. 1, pp. 79-98

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity and coerciveness in Besov spaces are equivalent.
DOI : 10.4064/sm-134-1-79-98

Yoshitaka Yamamoto 1

1
@article{10_4064_sm_134_1_79_98,
     author = {Yoshitaka Yamamoto},
     title = {On coerciveness in {Besov} spaces for abstract parabolic equations of higher order},
     journal = {Studia Mathematica},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-134-1-79-98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-79-98/}
}
TY  - JOUR
AU  - Yoshitaka Yamamoto
TI  - On coerciveness in Besov spaces for abstract parabolic equations of higher order
JO  - Studia Mathematica
PY  - 1999
SP  - 79
EP  - 98
VL  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-79-98/
DO  - 10.4064/sm-134-1-79-98
LA  - en
ID  - 10_4064_sm_134_1_79_98
ER  - 
%0 Journal Article
%A Yoshitaka Yamamoto
%T On coerciveness in Besov spaces for abstract parabolic equations of higher order
%J Studia Mathematica
%D 1999
%P 79-98
%V 134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-79-98/
%R 10.4064/sm-134-1-79-98
%G en
%F 10_4064_sm_134_1_79_98
Yoshitaka Yamamoto. On coerciveness in Besov spaces for abstract parabolic equations of higher order. Studia Mathematica, Tome 134 (1999) no. 1, pp. 79-98. doi: 10.4064/sm-134-1-79-98

Cité par Sources :