A sharp estimate for the Hardy-Littlewood maximal function
Studia Mathematica, Tome 134 (1999) no. 1, pp. 57-67
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The best constant in the usual $L^p$ norm inequality for the centered Hardy-Littlewood maximal function on $ℝ^1$ is obtained for the class of all "peak-shaped" functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.
Affiliations des auteurs :
Loukas Grafakos 1 ; Stephen Montgomery-Smith 1 ; Olexei Motrunich 1
@article{10_4064_sm_134_1_57_67,
author = {Loukas Grafakos and Stephen Montgomery-Smith and Olexei Motrunich},
title = {A sharp estimate for the {Hardy-Littlewood} maximal function},
journal = {Studia Mathematica},
pages = {57--67},
publisher = {mathdoc},
volume = {134},
number = {1},
year = {1999},
doi = {10.4064/sm-134-1-57-67},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-57-67/}
}
TY - JOUR AU - Loukas Grafakos AU - Stephen Montgomery-Smith AU - Olexei Motrunich TI - A sharp estimate for the Hardy-Littlewood maximal function JO - Studia Mathematica PY - 1999 SP - 57 EP - 67 VL - 134 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-57-67/ DO - 10.4064/sm-134-1-57-67 LA - en ID - 10_4064_sm_134_1_57_67 ER -
%0 Journal Article %A Loukas Grafakos %A Stephen Montgomery-Smith %A Olexei Motrunich %T A sharp estimate for the Hardy-Littlewood maximal function %J Studia Mathematica %D 1999 %P 57-67 %V 134 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-57-67/ %R 10.4064/sm-134-1-57-67 %G en %F 10_4064_sm_134_1_57_67
Loukas Grafakos; Stephen Montgomery-Smith; Olexei Motrunich. A sharp estimate for the Hardy-Littlewood maximal function. Studia Mathematica, Tome 134 (1999) no. 1, pp. 57-67. doi: 10.4064/sm-134-1-57-67
Cité par Sources :