A sharp estimate for the Hardy-Littlewood maximal function
Studia Mathematica, Tome 134 (1999) no. 1, pp. 57-67

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The best constant in the usual $L^p$ norm inequality for the centered Hardy-Littlewood maximal function on $ℝ^1$ is obtained for the class of all "peak-shaped" functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.
DOI : 10.4064/sm-134-1-57-67

Loukas Grafakos 1 ; Stephen Montgomery-Smith 1 ; Olexei Motrunich 1

1
@article{10_4064_sm_134_1_57_67,
     author = {Loukas Grafakos and Stephen Montgomery-Smith and Olexei Motrunich},
     title = {A sharp estimate for the {Hardy-Littlewood} maximal function},
     journal = {Studia Mathematica},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-134-1-57-67},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-57-67/}
}
TY  - JOUR
AU  - Loukas Grafakos
AU  - Stephen Montgomery-Smith
AU  - Olexei Motrunich
TI  - A sharp estimate for the Hardy-Littlewood maximal function
JO  - Studia Mathematica
PY  - 1999
SP  - 57
EP  - 67
VL  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-57-67/
DO  - 10.4064/sm-134-1-57-67
LA  - en
ID  - 10_4064_sm_134_1_57_67
ER  - 
%0 Journal Article
%A Loukas Grafakos
%A Stephen Montgomery-Smith
%A Olexei Motrunich
%T A sharp estimate for the Hardy-Littlewood maximal function
%J Studia Mathematica
%D 1999
%P 57-67
%V 134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-57-67/
%R 10.4064/sm-134-1-57-67
%G en
%F 10_4064_sm_134_1_57_67
Loukas Grafakos; Stephen Montgomery-Smith; Olexei Motrunich. A sharp estimate for the Hardy-Littlewood maximal function. Studia Mathematica, Tome 134 (1999) no. 1, pp. 57-67. doi: 10.4064/sm-134-1-57-67

Cité par Sources :