Order bounded composition operators on the Hardy spaces and the Nevanlinna class
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 134 (1999) no. 1, pp. 35-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study the order boundedness of composition operators induced by holomorphic self-maps of the open unit disc D. We consider these operators first on the Hardy spaces $H^p$ 0  p  ∞ and then on the Nevanlinna class N. Given a non-negative increasing function h on [0,∞[, a composition operator is said to be X,L_h-order bounded (we write (X,L_h)-ob) with $X = H^p$ or X = N if its composition with the map f ↦ f*, where f* denotes the radial limit of f, is order bounded from X into $L_h$. We give a complete characterization and a family of examples in both cases. On the other hand, we show that the ($N,log^{+}L$)-ob composition operators are exactly those which are Hilbert-Schmidt on $H^2$. We also prove that the ($N,L^q$)-ob composition operators are exactly those which are compact from N into $H^q$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
composition operators, order bounded maps, Hardy spaces, Nevanlinna class, radial limit, moment sequences and analytic moment sequences
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Nizar Jaoua 1
@article{10_4064_sm_134_1_35_55,
     author = {Nizar Jaoua},
     title = {Order bounded composition operators on the {Hardy} spaces and the {Nevanlinna} class},
     journal = {Studia Mathematica},
     pages = {35--55},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-134-1-35-55},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-35-55/}
}
                      
                      
                    TY - JOUR AU - Nizar Jaoua TI - Order bounded composition operators on the Hardy spaces and the Nevanlinna class JO - Studia Mathematica PY - 1999 SP - 35 EP - 55 VL - 134 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-35-55/ DO - 10.4064/sm-134-1-35-55 LA - en ID - 10_4064_sm_134_1_35_55 ER -
%0 Journal Article %A Nizar Jaoua %T Order bounded composition operators on the Hardy spaces and the Nevanlinna class %J Studia Mathematica %D 1999 %P 35-55 %V 134 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-134-1-35-55/ %R 10.4064/sm-134-1-35-55 %G en %F 10_4064_sm_134_1_35_55
Nizar Jaoua. Order bounded composition operators on the Hardy spaces and the Nevanlinna class. Studia Mathematica, Tome 134 (1999) no. 1, pp. 35-55. doi: 10.4064/sm-134-1-35-55
Cité par Sources :
