Uniqueness of unconditional bases in $c_0$-products
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 133 (1999) no. 3, pp. 275-294
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does $c_0(X)$. We also give some positive results including a simpler proof that $c_0(ℓ_1)$ has a unique unconditional basis and a proof that $c_0(ℓ_{p_n}^{N_n})$ has a unique unconditional basis when $p_n ↓ 1$, $N_{n+1} ≥ 2N_{n}$ and $(p_n-p_{n+1}) logN_{n}$ remains bounded.
            
            
            
          
        
      @article{10_4064_sm_133_3_275_294,
     author = {P. Casazza and  },
     title = {Uniqueness of unconditional bases in $c_0$-products},
     journal = {Studia Mathematica},
     pages = {275--294},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-133-3-275-294},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-275-294/}
}
                      
                      
                    TY - JOUR AU - P. Casazza AU - TI - Uniqueness of unconditional bases in $c_0$-products JO - Studia Mathematica PY - 1999 SP - 275 EP - 294 VL - 133 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-275-294/ DO - 10.4064/sm-133-3-275-294 LA - en ID - 10_4064_sm_133_3_275_294 ER -
P. Casazza; . Uniqueness of unconditional bases in $c_0$-products. Studia Mathematica, Tome 133 (1999) no. 3, pp. 275-294. doi: 10.4064/sm-133-3-275-294
Cité par Sources :
