Uniqueness of unconditional bases in $c_0$-products
Studia Mathematica, Tome 133 (1999) no. 3, pp. 275-294

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give counterexamples to a conjecture of Bourgain, Casazza, Lindenstrauss and Tzafriri that if X has a unique unconditional basis (up to permutation) then so does $c_0(X)$. We also give some positive results including a simpler proof that $c_0(ℓ_1)$ has a unique unconditional basis and a proof that $c_0(ℓ_{p_n}^{N_n})$ has a unique unconditional basis when $p_n ↓ 1$, $N_{n+1} ≥ 2N_{n}$ and $(p_n-p_{n+1}) logN_{n}$ remains bounded.
DOI : 10.4064/sm-133-3-275-294

P. Casazza 1 ;  1

1
@article{10_4064_sm_133_3_275_294,
     author = {P. Casazza and  },
     title = {Uniqueness of unconditional bases in $c_0$-products},
     journal = {Studia Mathematica},
     pages = {275--294},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-133-3-275-294},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-275-294/}
}
TY  - JOUR
AU  - P. Casazza
AU  -  
TI  - Uniqueness of unconditional bases in $c_0$-products
JO  - Studia Mathematica
PY  - 1999
SP  - 275
EP  - 294
VL  - 133
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-275-294/
DO  - 10.4064/sm-133-3-275-294
LA  - en
ID  - 10_4064_sm_133_3_275_294
ER  - 
%0 Journal Article
%A P. Casazza
%A  
%T Uniqueness of unconditional bases in $c_0$-products
%J Studia Mathematica
%D 1999
%P 275-294
%V 133
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-275-294/
%R 10.4064/sm-133-3-275-294
%G en
%F 10_4064_sm_133_3_275_294
P. Casazza;  . Uniqueness of unconditional bases in $c_0$-products. Studia Mathematica, Tome 133 (1999) no. 3, pp. 275-294. doi: 10.4064/sm-133-3-275-294

Cité par Sources :