A theorem on isotropic spaces
Studia Mathematica, Tome 133 (1999) no. 3, pp. 257-260
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let X be a normed space and $G_F(X)$ the group of all linear surjective isometries of X that are finite-dimensional perturbations of the identity. We prove that if $G_F(X)$ acts transitively on the unit sphere then X must be an inner product space.
@article{10_4064_sm_133_3_257_260,
author = {F\'elix Cabello S\'anchez},
title = {A theorem on isotropic spaces},
journal = {Studia Mathematica},
pages = {257--260},
publisher = {mathdoc},
volume = {133},
number = {3},
year = {1999},
doi = {10.4064/sm-133-3-257-260},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-257-260/}
}
Félix Cabello Sánchez. A theorem on isotropic spaces. Studia Mathematica, Tome 133 (1999) no. 3, pp. 257-260. doi: 10.4064/sm-133-3-257-260
Cité par Sources :