On strongly asymptotically developable functions and the Borel-Ritt theorem
Studia Mathematica, Tome 133 (1999) no. 3, pp. 231-248

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the holomorphic functions on polysectors whose derivatives remain bounded on proper subpolysectors are precisely those strongly asymptotically developable in the sense of Majima. This fact allows us to solve two Borel-Ritt type interpolation problems from a functional-analytic viewpoint.
DOI : 10.4064/sm-133-3-231-248

J. Sanz 1 ;  1

1
@article{10_4064_sm_133_3_231_248,
     author = {J. Sanz and  },
     title = {On strongly asymptotically developable functions and the {Borel-Ritt} theorem},
     journal = {Studia Mathematica},
     pages = {231--248},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-133-3-231-248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-231-248/}
}
TY  - JOUR
AU  - J. Sanz
AU  -  
TI  - On strongly asymptotically developable functions and the Borel-Ritt theorem
JO  - Studia Mathematica
PY  - 1999
SP  - 231
EP  - 248
VL  - 133
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-231-248/
DO  - 10.4064/sm-133-3-231-248
LA  - en
ID  - 10_4064_sm_133_3_231_248
ER  - 
%0 Journal Article
%A J. Sanz
%A  
%T On strongly asymptotically developable functions and the Borel-Ritt theorem
%J Studia Mathematica
%D 1999
%P 231-248
%V 133
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-231-248/
%R 10.4064/sm-133-3-231-248
%G en
%F 10_4064_sm_133_3_231_248
J. Sanz;  . On strongly asymptotically developable functions and the Borel-Ritt theorem. Studia Mathematica, Tome 133 (1999) no. 3, pp. 231-248. doi: 10.4064/sm-133-3-231-248

Cité par Sources :