On strongly asymptotically developable functions and the Borel-Ritt theorem
Studia Mathematica, Tome 133 (1999) no. 3, pp. 231-248
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the holomorphic functions on polysectors whose derivatives remain bounded on proper subpolysectors are precisely those strongly asymptotically developable in the sense of Majima. This fact allows us to solve two Borel-Ritt type interpolation problems from a functional-analytic viewpoint.
@article{10_4064_sm_133_3_231_248,
author = {J. Sanz and },
title = {On strongly asymptotically developable functions and the {Borel-Ritt} theorem},
journal = {Studia Mathematica},
pages = {231--248},
publisher = {mathdoc},
volume = {133},
number = {3},
year = {1999},
doi = {10.4064/sm-133-3-231-248},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-231-248/}
}
TY - JOUR AU - J. Sanz AU - TI - On strongly asymptotically developable functions and the Borel-Ritt theorem JO - Studia Mathematica PY - 1999 SP - 231 EP - 248 VL - 133 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-231-248/ DO - 10.4064/sm-133-3-231-248 LA - en ID - 10_4064_sm_133_3_231_248 ER -
%0 Journal Article %A J. Sanz %A %T On strongly asymptotically developable functions and the Borel-Ritt theorem %J Studia Mathematica %D 1999 %P 231-248 %V 133 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-3-231-248/ %R 10.4064/sm-133-3-231-248 %G en %F 10_4064_sm_133_3_231_248
J. Sanz; . On strongly asymptotically developable functions and the Borel-Ritt theorem. Studia Mathematica, Tome 133 (1999) no. 3, pp. 231-248. doi: 10.4064/sm-133-3-231-248
Cité par Sources :