Toeplitz operators in the commutant of a composition operator
Studia Mathematica, Tome 133 (1999) no. 2, pp. 187-196
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
If ϕ is an analytic self-mapping of the unit disc D and if $H^2(D)$ is the Hardy-Hilbert space on D, the composition operator $C_ϕ$ on $H^{2}(D)$ is defined by $C_ϕ(f) = f∘ϕ$. In this article, we consider which Toeplitz operators $T_f$ satisfy $T_{f}C_{ϕ} = C_{ϕ}T_{f}$
@article{10_4064_sm_133_2_187_196,
author = {Bruce Cload},
title = {Toeplitz operators in the commutant of a composition operator},
journal = {Studia Mathematica},
pages = {187--196},
year = {1999},
volume = {133},
number = {2},
doi = {10.4064/sm-133-2-187-196},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-187-196/}
}
TY - JOUR AU - Bruce Cload TI - Toeplitz operators in the commutant of a composition operator JO - Studia Mathematica PY - 1999 SP - 187 EP - 196 VL - 133 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-187-196/ DO - 10.4064/sm-133-2-187-196 LA - en ID - 10_4064_sm_133_2_187_196 ER -
Bruce Cload. Toeplitz operators in the commutant of a composition operator. Studia Mathematica, Tome 133 (1999) no. 2, pp. 187-196. doi: 10.4064/sm-133-2-187-196
Cité par Sources :