Toeplitz operators in the commutant of a composition operator
Studia Mathematica, Tome 133 (1999) no. 2, pp. 187-196 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

If ϕ is an analytic self-mapping of the unit disc D and if $H^2(D)$ is the Hardy-Hilbert space on D, the composition operator $C_ϕ$ on $H^{2}(D)$ is defined by $C_ϕ(f) = f∘ϕ$. In this article, we consider which Toeplitz operators $T_f$ satisfy $T_{f}C_{ϕ} = C_{ϕ}T_{f}$
@article{10_4064_sm_133_2_187_196,
     author = {Bruce Cload},
     title = {Toeplitz operators in the commutant of a composition operator},
     journal = {Studia Mathematica},
     pages = {187--196},
     year = {1999},
     volume = {133},
     number = {2},
     doi = {10.4064/sm-133-2-187-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-187-196/}
}
TY  - JOUR
AU  - Bruce Cload
TI  - Toeplitz operators in the commutant of a composition operator
JO  - Studia Mathematica
PY  - 1999
SP  - 187
EP  - 196
VL  - 133
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-187-196/
DO  - 10.4064/sm-133-2-187-196
LA  - en
ID  - 10_4064_sm_133_2_187_196
ER  - 
%0 Journal Article
%A Bruce Cload
%T Toeplitz operators in the commutant of a composition operator
%J Studia Mathematica
%D 1999
%P 187-196
%V 133
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-187-196/
%R 10.4064/sm-133-2-187-196
%G en
%F 10_4064_sm_133_2_187_196
Bruce Cload. Toeplitz operators in the commutant of a composition operator. Studia Mathematica, Tome 133 (1999) no. 2, pp. 187-196. doi: 10.4064/sm-133-2-187-196

Cité par Sources :