On Arens-Michael algebras which do not have non-zero injective ⨶-modules
Studia Mathematica, Tome 133 (1999) no. 2, pp. 163-174
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A certain class of Arens-Michael algebras having no non-zero injective topological ⨶-modules is introduced. This class is rather wide and contains, in particular, algebras of holomorphic functions on polydomains in $ℂ^n$, algebras of smooth functions on domains in $ℝ^n$, algebras of formal power series, and, more generally, any nuclear Fréchet-Arens-Michael algebra which has a free bimodule Koszul resolution.
@article{10_4064_sm_133_2_163_174,
author = {A. Pirkovskii},
title = {On {Arens-Michael} algebras which do not have non-zero injective ⨶-modules},
journal = {Studia Mathematica},
pages = {163--174},
year = {1999},
volume = {133},
number = {2},
doi = {10.4064/sm-133-2-163-174},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-163-174/}
}
TY - JOUR AU - A. Pirkovskii TI - On Arens-Michael algebras which do not have non-zero injective ⨶-modules JO - Studia Mathematica PY - 1999 SP - 163 EP - 174 VL - 133 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-163-174/ DO - 10.4064/sm-133-2-163-174 LA - en ID - 10_4064_sm_133_2_163_174 ER -
A. Pirkovskii. On Arens-Michael algebras which do not have non-zero injective ⨶-modules. Studia Mathematica, Tome 133 (1999) no. 2, pp. 163-174. doi: 10.4064/sm-133-2-163-174
Cité par Sources :