A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
Studia Mathematica, Tome 133 (1999) no. 2, pp. 131-143
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For every countable ordinal α, we construct an $l_1$-predual $X_α$ which is isometric to a subspace of $C ( ω^{ω^{ω^α + 2}} ) $ and isomorphic to a quotient of $C(ω^ω)$. However, $X_α$ is not isomorphic to a subspace of $C(ω^{ω^α})$.
Keywords:
spaces of continuous functions, countable compact spaces, $l_1$-preduals
@article{10_4064_sm_133_2_131_143,
author = {Ioannis Gasparis},
title = {A class of $l^1$-preduals which are isomorphic to quotients of $C(\ensuremath{\omega}^\ensuremath{\omega})$},
journal = {Studia Mathematica},
pages = {131--143},
year = {1999},
volume = {133},
number = {2},
doi = {10.4064/sm-133-2-131-143},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-131-143/}
}
TY - JOUR AU - Ioannis Gasparis TI - A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$ JO - Studia Mathematica PY - 1999 SP - 131 EP - 143 VL - 133 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-131-143/ DO - 10.4064/sm-133-2-131-143 LA - en ID - 10_4064_sm_133_2_131_143 ER -
Ioannis Gasparis. A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$. Studia Mathematica, Tome 133 (1999) no. 2, pp. 131-143. doi: 10.4064/sm-133-2-131-143
Cité par Sources :