A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
Studia Mathematica, Tome 133 (1999) no. 2, pp. 131-143

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every countable ordinal α, we construct an $l_1$-predual $X_α$ which is isometric to a subspace of $C ( ω^{ω^{ω^α + 2}} ) $ and isomorphic to a quotient of $C(ω^ω)$. However, $X_α$ is not isomorphic to a subspace of $C(ω^{ω^α})$.
DOI : 10.4064/sm-133-2-131-143
Keywords: spaces of continuous functions, countable compact spaces, $l_1$-preduals

Ioannis Gasparis 1

1
@article{10_4064_sm_133_2_131_143,
     author = {Ioannis Gasparis},
     title = {A class of $l^1$-preduals which are isomorphic to quotients of $C(\ensuremath{\omega}^\ensuremath{\omega})$},
     journal = {Studia Mathematica},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-133-2-131-143},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-131-143/}
}
TY  - JOUR
AU  - Ioannis Gasparis
TI  - A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
JO  - Studia Mathematica
PY  - 1999
SP  - 131
EP  - 143
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-131-143/
DO  - 10.4064/sm-133-2-131-143
LA  - en
ID  - 10_4064_sm_133_2_131_143
ER  - 
%0 Journal Article
%A Ioannis Gasparis
%T A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$
%J Studia Mathematica
%D 1999
%P 131-143
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-131-143/
%R 10.4064/sm-133-2-131-143
%G en
%F 10_4064_sm_133_2_131_143
Ioannis Gasparis. A class of $l^1$-preduals which are isomorphic to quotients of $C(ω^ω)$. Studia Mathematica, Tome 133 (1999) no. 2, pp. 131-143. doi: 10.4064/sm-133-2-131-143

Cité par Sources :