Commutants of certain multiplication operators on Hilbert spaces of analytic functions
Studia Mathematica, Tome 133 (1999) no. 2, pp. 121-130
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper characterizes the commutant of certain multiplication operators on Hilbert spaces of analytic functions. Let $A=M_z$ be the operator of multiplication by z on the underlying Hilbert space. We give sufficient conditions for an operator essentially commuting with A and commuting with $A^n$ for some n>1 to be the operator of multiplication by an analytic symbol. This extends a result of Shields and Wallen.
Keywords:
commutant, multiplication operators, Hilbert spaces of analytic functions, reproducing kernel
Affiliations des auteurs :
K Seddighi 1 ; S. M. Vaezpour 1
@article{10_4064_sm_133_2_121_130,
author = {K Seddighi and S. M. Vaezpour},
title = {Commutants of certain multiplication operators on {Hilbert} spaces of analytic functions},
journal = {Studia Mathematica},
pages = {121--130},
publisher = {mathdoc},
volume = {133},
number = {2},
year = {1999},
doi = {10.4064/sm-133-2-121-130},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-121-130/}
}
TY - JOUR AU - K Seddighi AU - S. M. Vaezpour TI - Commutants of certain multiplication operators on Hilbert spaces of analytic functions JO - Studia Mathematica PY - 1999 SP - 121 EP - 130 VL - 133 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-121-130/ DO - 10.4064/sm-133-2-121-130 LA - en ID - 10_4064_sm_133_2_121_130 ER -
%0 Journal Article %A K Seddighi %A S. M. Vaezpour %T Commutants of certain multiplication operators on Hilbert spaces of analytic functions %J Studia Mathematica %D 1999 %P 121-130 %V 133 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-2-121-130/ %R 10.4064/sm-133-2-121-130 %G en %F 10_4064_sm_133_2_121_130
K Seddighi; S. M. Vaezpour. Commutants of certain multiplication operators on Hilbert spaces of analytic functions. Studia Mathematica, Tome 133 (1999) no. 2, pp. 121-130. doi: 10.4064/sm-133-2-121-130
Cité par Sources :