On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions
Studia Mathematica, Tome 133 (1999) no. 1, pp. 29-37
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.
Keywords:
Fréchet Φ-differentiability, γ-paraconvex functions, α(·)-monotone multifunctions
Affiliations des auteurs :
S. Rolewicz 1
@article{10_4064_sm_133_1_29_37,
author = {S. Rolewicz},
title = {On \ensuremath{\alpha}({\textperiodcentered})-monotone multifunctions and differentiability of \ensuremath{\gamma}-paraconvex functions},
journal = {Studia Mathematica},
pages = {29--37},
publisher = {mathdoc},
volume = {133},
number = {1},
year = {1999},
doi = {10.4064/sm-133-1-29-37},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-29-37/}
}
TY - JOUR AU - S. Rolewicz TI - On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions JO - Studia Mathematica PY - 1999 SP - 29 EP - 37 VL - 133 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-29-37/ DO - 10.4064/sm-133-1-29-37 LA - en ID - 10_4064_sm_133_1_29_37 ER -
S. Rolewicz. On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions. Studia Mathematica, Tome 133 (1999) no. 1, pp. 29-37. doi: 10.4064/sm-133-1-29-37
Cité par Sources :