On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions
Studia Mathematica, Tome 133 (1999) no. 1, pp. 29-37

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction $Γ: X → 2^Φ$ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.
DOI : 10.4064/sm-133-1-29-37
Keywords: Fréchet Φ-differentiability, γ-paraconvex functions, α(·)-monotone multifunctions

S. Rolewicz 1

1
@article{10_4064_sm_133_1_29_37,
     author = {S. Rolewicz},
     title = {On \ensuremath{\alpha}({\textperiodcentered})-monotone multifunctions and differentiability of \ensuremath{\gamma}-paraconvex functions},
     journal = {Studia Mathematica},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-133-1-29-37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-29-37/}
}
TY  - JOUR
AU  - S. Rolewicz
TI  - On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions
JO  - Studia Mathematica
PY  - 1999
SP  - 29
EP  - 37
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-29-37/
DO  - 10.4064/sm-133-1-29-37
LA  - en
ID  - 10_4064_sm_133_1_29_37
ER  - 
%0 Journal Article
%A S. Rolewicz
%T On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions
%J Studia Mathematica
%D 1999
%P 29-37
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-133-1-29-37/
%R 10.4064/sm-133-1-29-37
%G en
%F 10_4064_sm_133_1_29_37
S. Rolewicz. On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions. Studia Mathematica, Tome 133 (1999) no. 1, pp. 29-37. doi: 10.4064/sm-133-1-29-37

Cité par Sources :