On a vector-valued local ergodic theorem in $L_∞$
Studia Mathematica, Tome 132 (1999) no. 3, pp. 285-298
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $T = {T(u): u ∈ ℝ_d^{+}}$ be a strongly continuous d-dimensional semigroup of linear contractions on $L_1((Ω,Σ,μ);X)$, where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since $L_1((Ω,Σ,μ);X)* = L_∞((Ω,Σ,μ);X*)$, the adjoint semigroup $T* = {T*(u): u ∈ ℝ_d^{+}}$ becomes a weak*-continuous semigroup of linear contractions acting on $L_∞((Ω,Σ,μ);X*)$. In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), $u ∈ ℝ_d^{+}$, has a contraction majorant P(u) defined on $L_1((Ω,Σ,μ);ℝ)$, that is, P(u) is a positive linear contraction on $L_1((Ω,Σ,μ);ℝ)$ such that $‖T(u)f(ω)‖ ≤ P(u)‖f(·)‖(ω)$ almost everywhere on Ω for every $⨍ ∈ L_1((Ω,Σ,μ);X)$, we prove that the local ergodic theorem holds for T*.
Keywords:
vector-valued local ergodic theorem, reflexive Banach space, d-dimensional semigroup of linear contractions, contraction majorant
@article{10_4064_sm_132_3_285_298,
author = {Ryotaro Sato},
title = {On a vector-valued local ergodic theorem in $L_\ensuremath{\infty}$},
journal = {Studia Mathematica},
pages = {285--298},
year = {1999},
volume = {132},
number = {3},
doi = {10.4064/sm-132-3-285-298},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-285-298/}
}
Ryotaro Sato. On a vector-valued local ergodic theorem in $L_∞$. Studia Mathematica, Tome 132 (1999) no. 3, pp. 285-298. doi: 10.4064/sm-132-3-285-298
Cité par Sources :