On a vector-valued local ergodic theorem in $L_∞$
Studia Mathematica, Tome 132 (1999) no. 3, pp. 285-298

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T = {T(u): u ∈ ℝ_d^{+}}$ be a strongly continuous d-dimensional semigroup of linear contractions on $L_1((Ω,Σ,μ);X)$, where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since $L_1((Ω,Σ,μ);X)* = L_∞((Ω,Σ,μ);X*)$, the adjoint semigroup $T* = {T*(u): u ∈ ℝ_d^{+}}$ becomes a weak*-continuous semigroup of linear contractions acting on $L_∞((Ω,Σ,μ);X*)$. In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), $u ∈ ℝ_d^{+}$, has a contraction majorant P(u) defined on $L_1((Ω,Σ,μ);ℝ)$, that is, P(u) is a positive linear contraction on $L_1((Ω,Σ,μ);ℝ)$ such that $‖T(u)f(ω)‖ ≤ P(u)‖f(·)‖(ω)$ almost everywhere on Ω for every $⨍ ∈ L_1((Ω,Σ,μ);X)$, we prove that the local ergodic theorem holds for T*.
DOI : 10.4064/sm-132-3-285-298
Keywords: vector-valued local ergodic theorem, reflexive Banach space, d-dimensional semigroup of linear contractions, contraction majorant

Ryotaro Sato 1

1
@article{10_4064_sm_132_3_285_298,
     author = {Ryotaro Sato},
     title = {On a vector-valued local ergodic theorem in $L_\ensuremath{\infty}$},
     journal = {Studia Mathematica},
     pages = {285--298},
     publisher = {mathdoc},
     volume = {132},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-132-3-285-298},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-285-298/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - On a vector-valued local ergodic theorem in $L_∞$
JO  - Studia Mathematica
PY  - 1999
SP  - 285
EP  - 298
VL  - 132
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-285-298/
DO  - 10.4064/sm-132-3-285-298
LA  - en
ID  - 10_4064_sm_132_3_285_298
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T On a vector-valued local ergodic theorem in $L_∞$
%J Studia Mathematica
%D 1999
%P 285-298
%V 132
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-285-298/
%R 10.4064/sm-132-3-285-298
%G en
%F 10_4064_sm_132_3_285_298
Ryotaro Sato. On a vector-valued local ergodic theorem in $L_∞$. Studia Mathematica, Tome 132 (1999) no. 3, pp. 285-298. doi: 10.4064/sm-132-3-285-298

Cité par Sources :